Step | Hyp | Ref
| Expression |
1 | | df-btwn 27163 |
. . 3
⊢ Btwn =
◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |
2 | 1 | breqi 5076 |
. 2
⊢ (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ 𝐴◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}〈𝐵, 𝐶〉) |
3 | | opex 5373 |
. . . . 5
⊢
〈𝐵, 𝐶〉 ∈ V |
4 | | brcnvg 5777 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 〈𝐵, 𝐶〉 ∈ V) → (𝐴◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}〈𝐵, 𝐶〉 ↔ 〈𝐵, 𝐶〉{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}𝐴)) |
5 | 3, 4 | mpan2 687 |
. . . 4
⊢ (𝐴 ∈ (𝔼‘𝑁) → (𝐴◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}〈𝐵, 𝐶〉 ↔ 〈𝐵, 𝐶〉{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}𝐴)) |
6 | 5 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}〈𝐵, 𝐶〉 ↔ 〈𝐵, 𝐶〉{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}𝐴)) |
7 | | df-br 5071 |
. . . 4
⊢
(〈𝐵, 𝐶〉{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}𝐴 ↔ 〈〈𝐵, 𝐶〉, 𝐴〉 ∈ {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}) |
8 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛))) |
9 | 8 | 3anbi1d 1438 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)))) |
10 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑦‘𝑖) = (𝐵‘𝑖)) |
11 | 10 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ((1 − 𝑡) · (𝑦‘𝑖)) = ((1 − 𝑡) · (𝐵‘𝑖))) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) |
13 | 12 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → ((𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))) ↔ (𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖))))) |
14 | 13 | rexralbidv 3229 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖))))) |
15 | 9, 14 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖)))))) |
16 | 15 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖)))))) |
17 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛))) |
18 | 17 | 3anbi2d 1439 |
. . . . . . . . 9
⊢ (𝑧 = 𝐶 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)))) |
19 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐶 → (𝑧‘𝑖) = (𝐶‘𝑖)) |
20 | 19 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐶 → (𝑡 · (𝑧‘𝑖)) = (𝑡 · (𝐶‘𝑖))) |
21 | 20 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐶 → (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖))) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) |
22 | 21 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐶 → ((𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖))) ↔ (𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
23 | 22 | rexralbidv 3229 |
. . . . . . . . 9
⊢ (𝑧 = 𝐶 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
24 | 18, 23 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
25 | 24 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
26 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛))) |
27 | 26 | 3anbi3d 1440 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)))) |
28 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝑥‘𝑖) = (𝐴‘𝑖)) |
29 | 28 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) ↔ (𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
30 | 29 | rexralbidv 3229 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
31 | 27, 30 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
32 | 31 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
33 | 16, 25, 32 | eloprabg 7362 |
. . . . . 6
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (〈〈𝐵, 𝐶〉, 𝐴〉 ∈ {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
34 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) → 𝐵 ∈ (𝔼‘𝑛)) |
35 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
36 | | eedimeq 27169 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁) |
37 | 34, 35, 36 | syl2anr 596 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁) |
38 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
39 | 38 | raleqdv 3339 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
40 | 39 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
41 | 37, 40 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
42 | 41 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
43 | 42 | expimpd 453 |
. . . . . . . 8
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
44 | 43 | rexlimdvw 3218 |
. . . . . . 7
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
45 | | eleenn 27167 |
. . . . . . . . 9
⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
46 | 45 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
47 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
48 | 47 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁))) |
49 | 47 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝐶 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑁))) |
50 | 47 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁))) |
51 | 48, 49, 50 | 3anbi123d 1434 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))) |
52 | 51, 40 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
53 | 52 | rspcev 3552 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
54 | 53 | exp32 420 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))))) |
55 | 46, 54 | mpcom 38 |
. . . . . . 7
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))))) |
56 | 44, 55 | impbid 211 |
. . . . . 6
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
57 | 33, 56 | bitrd 278 |
. . . . 5
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (〈〈𝐵, 𝐶〉, 𝐴〉 ∈ {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
58 | 57 | 3comr 1123 |
. . . 4
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (〈〈𝐵, 𝐶〉, 𝐴〉 ∈ {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
59 | 7, 58 | syl5bb 282 |
. . 3
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (〈𝐵, 𝐶〉{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}𝐴 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
60 | 6, 59 | bitrd 278 |
. 2
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑦‘𝑖)) + (𝑡 · (𝑧‘𝑖))))}〈𝐵, 𝐶〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |
61 | 2, 60 | syl5bb 282 |
1
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) |