MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn Structured version   Visualization version   GIF version

Theorem brbtwn 26688
Description: The binary relation form of the betweenness predicate. The statement 𝐴 Btwn ⟨𝐵, 𝐶 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑡   𝐴,𝑖,𝑡   𝐵,𝑖,𝑡   𝐶,𝑖,𝑡

Proof of Theorem brbtwn
Dummy variables 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 26681 . . 3 Btwn = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}
21breqi 5075 . 2 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩)
3 opex 5359 . . . . 5 𝐵, 𝐶⟩ ∈ V
4 brcnvg 5753 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
53, 4mpan2 689 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
653ad2ant1 1129 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
7 df-br 5070 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))})
8 eleq1 2903 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi1d 1436 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
10 fveq1 6672 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦𝑖) = (𝐵𝑖))
1110oveq2d 7175 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((1 − 𝑡) · (𝑦𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
1211oveq1d 7174 . . . . . . . . . . 11 (𝑦 = 𝐵 → (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))
1312eqeq2d 2835 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
1413rexralbidv 3304 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
159, 14anbi12d 632 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
1615rexbidv 3300 . . . . . . 7 (𝑦 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
17 eleq1 2903 . . . . . . . . . 10 (𝑧 = 𝐶 → (𝑧 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
18173anbi2d 1437 . . . . . . . . 9 (𝑧 = 𝐶 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
19 fveq1 6672 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧𝑖) = (𝐶𝑖))
2019oveq2d 7175 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (𝑡 · (𝑧𝑖)) = (𝑡 · (𝐶𝑖)))
2120oveq2d 7175 . . . . . . . . . . 11 (𝑧 = 𝐶 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
2221eqeq2d 2835 . . . . . . . . . 10 (𝑧 = 𝐶 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2322rexralbidv 3304 . . . . . . . . 9 (𝑧 = 𝐶 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2418, 23anbi12d 632 . . . . . . . 8 (𝑧 = 𝐶 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
2524rexbidv 3300 . . . . . . 7 (𝑧 = 𝐶 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
26 eleq1 2903 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
27263anbi3d 1438 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))))
28 fveq1 6672 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑖) = (𝐴𝑖))
2928eqeq1d 2826 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3029rexralbidv 3304 . . . . . . . . 9 (𝑥 = 𝐴 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3127, 30anbi12d 632 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3231rexbidv 3300 . . . . . . 7 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3316, 25, 32eloprabg 7265 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
34 simp1 1132 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) → 𝐵 ∈ (𝔼‘𝑛))
35 simp1 1132 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
36 eedimeq 26687 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3734, 35, 36syl2anr 598 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁)
38 oveq2 7167 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3938raleqdv 3418 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4039rexbidv 3300 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4137, 40syl 17 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4241biimpd 231 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4342expimpd 456 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4443rexlimdvw 3293 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
45 eleenn 26685 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
46453ad2ant1 1129 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
47 fveq2 6673 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
4847eleq2d 2901 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
4947eleq2d 2901 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐶 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑁)))
5047eleq2d 2901 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
5148, 49, 503anbi123d 1432 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))))
5251, 40anbi12d 632 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5352rspcev 3626 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5453exp32 423 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
5546, 54mpcom 38 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5644, 55impbid 214 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5733, 56bitrd 281 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
58573comr 1121 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
597, 58syl5bb 285 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
606, 59bitrd 281 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
612, 60syl5bb 285 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  Vcvv 3497  cop 4576   class class class wbr 5069  ccnv 5557  cfv 6358  (class class class)co 7159  {coprab 7160  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  cn 11641  [,]cicc 12744  ...cfz 12895  𝔼cee 26677   Btwn cbtwn 26678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-z 11985  df-uz 12247  df-fz 12896  df-ee 26680  df-btwn 26681
This theorem is referenced by:  brbtwn2  26694  axsegcon  26716  ax5seg  26727  axbtwnid  26728  axpasch  26730  axeuclid  26752  axcontlem2  26754  axcontlem4  26756  axcontlem7  26759  axcontlem8  26760  elntg2  26774
  Copyright terms: Public domain W3C validator