MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn Structured version   Visualization version   GIF version

Theorem brbtwn 28929
Description: The binary relation form of the betweenness predicate. The statement 𝐴 Btwn ⟨𝐵, 𝐶 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑡   𝐴,𝑖,𝑡   𝐵,𝑖,𝑡   𝐶,𝑖,𝑡

Proof of Theorem brbtwn
Dummy variables 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 28922 . . 3 Btwn = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}
21breqi 5154 . 2 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩)
3 opex 5475 . . . . 5 𝐵, 𝐶⟩ ∈ V
4 brcnvg 5893 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
53, 4mpan2 691 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
653ad2ant1 1132 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
7 df-br 5149 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))})
8 eleq1 2827 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi1d 1439 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
10 fveq1 6906 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦𝑖) = (𝐵𝑖))
1110oveq2d 7447 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((1 − 𝑡) · (𝑦𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
1211oveq1d 7446 . . . . . . . . . . 11 (𝑦 = 𝐵 → (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))
1312eqeq2d 2746 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
1413rexralbidv 3221 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
159, 14anbi12d 632 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
1615rexbidv 3177 . . . . . . 7 (𝑦 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
17 eleq1 2827 . . . . . . . . . 10 (𝑧 = 𝐶 → (𝑧 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
18173anbi2d 1440 . . . . . . . . 9 (𝑧 = 𝐶 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
19 fveq1 6906 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧𝑖) = (𝐶𝑖))
2019oveq2d 7447 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (𝑡 · (𝑧𝑖)) = (𝑡 · (𝐶𝑖)))
2120oveq2d 7447 . . . . . . . . . . 11 (𝑧 = 𝐶 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
2221eqeq2d 2746 . . . . . . . . . 10 (𝑧 = 𝐶 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2322rexralbidv 3221 . . . . . . . . 9 (𝑧 = 𝐶 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2418, 23anbi12d 632 . . . . . . . 8 (𝑧 = 𝐶 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
2524rexbidv 3177 . . . . . . 7 (𝑧 = 𝐶 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
26 eleq1 2827 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
27263anbi3d 1441 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))))
28 fveq1 6906 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑖) = (𝐴𝑖))
2928eqeq1d 2737 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3029rexralbidv 3221 . . . . . . . . 9 (𝑥 = 𝐴 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3127, 30anbi12d 632 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3231rexbidv 3177 . . . . . . 7 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3316, 25, 32eloprabg 7543 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
34 simp1 1135 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) → 𝐵 ∈ (𝔼‘𝑛))
35 simp1 1135 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
36 eedimeq 28928 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3734, 35, 36syl2anr 597 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁)
38 oveq2 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3938raleqdv 3324 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4039rexbidv 3177 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4137, 40syl 17 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4241biimpd 229 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4342expimpd 453 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4443rexlimdvw 3158 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
45 eleenn 28926 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
46453ad2ant1 1132 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
47 fveq2 6907 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
4847eleq2d 2825 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
4947eleq2d 2825 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐶 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑁)))
5047eleq2d 2825 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
5148, 49, 503anbi123d 1435 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))))
5251, 40anbi12d 632 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5352rspcev 3622 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5453exp32 420 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
5546, 54mpcom 38 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5644, 55impbid 212 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5733, 56bitrd 279 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
58573comr 1124 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
597, 58bitrid 283 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
606, 59bitrd 279 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
612, 60bitrid 283 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cop 4637   class class class wbr 5148  ccnv 5688  cfv 6563  (class class class)co 7431  {coprab 7432  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  [,]cicc 13387  ...cfz 13544  𝔼cee 28918   Btwn cbtwn 28919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-z 12612  df-uz 12877  df-fz 13545  df-ee 28921  df-btwn 28922
This theorem is referenced by:  brbtwn2  28935  axsegcon  28957  ax5seg  28968  axbtwnid  28969  axpasch  28971  axeuclid  28993  axcontlem2  28995  axcontlem4  28997  axcontlem7  29000  axcontlem8  29001  elntg2  29015
  Copyright terms: Public domain W3C validator