Detailed syntax breakdown of Definition df-acn
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | 1 | wacn 9405 |
. 2
class AC
𝐴 |
3 | | cvv 3409 |
. . . . 5
class
V |
4 | 1, 3 | wcel 2111 |
. . . 4
wff 𝐴 ∈ V |
5 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
6 | 5 | cv 1537 |
. . . . . . . . 9
class 𝑦 |
7 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
8 | 7 | cv 1537 |
. . . . . . . . 9
class 𝑔 |
9 | 6, 8 | cfv 6339 |
. . . . . . . 8
class (𝑔‘𝑦) |
10 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
11 | 10 | cv 1537 |
. . . . . . . . 9
class 𝑓 |
12 | 6, 11 | cfv 6339 |
. . . . . . . 8
class (𝑓‘𝑦) |
13 | 9, 12 | wcel 2111 |
. . . . . . 7
wff (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
14 | 13, 5, 1 | wral 3070 |
. . . . . 6
wff
∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
15 | 14, 7 | wex 1781 |
. . . . 5
wff
∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
16 | | vx |
. . . . . . . . 9
setvar 𝑥 |
17 | 16 | cv 1537 |
. . . . . . . 8
class 𝑥 |
18 | 17 | cpw 4497 |
. . . . . . 7
class 𝒫
𝑥 |
19 | | c0 4227 |
. . . . . . . 8
class
∅ |
20 | 19 | csn 4525 |
. . . . . . 7
class
{∅} |
21 | 18, 20 | cdif 3857 |
. . . . . 6
class
(𝒫 𝑥 ∖
{∅}) |
22 | | cmap 8421 |
. . . . . 6
class
↑m |
23 | 21, 1, 22 | co 7155 |
. . . . 5
class
((𝒫 𝑥
∖ {∅}) ↑m 𝐴) |
24 | 15, 10, 23 | wral 3070 |
. . . 4
wff
∀𝑓 ∈
((𝒫 𝑥 ∖
{∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
25 | 4, 24 | wa 399 |
. . 3
wff (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅})
↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
26 | 25, 16 | cab 2735 |
. 2
class {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
27 | 2, 26 | wceq 1538 |
1
wff AC
𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |