MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval Structured version   Visualization version   GIF version

Theorem cfval 10316
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfval (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧

Proof of Theorem cfval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cflem 10314 . . 3 (𝐴 ∈ On → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2 intexab 5364 . . 3 (∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
31, 2sylib 218 . 2 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
4 sseq2 4035 . . . . . . . 8 (𝑣 = 𝐴 → (𝑦𝑣𝑦𝐴))
5 raleq 3331 . . . . . . . 8 (𝑣 = 𝐴 → (∀𝑧𝑣𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
64, 5anbi12d 631 . . . . . . 7 (𝑣 = 𝐴 → ((𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
76anbi2d 629 . . . . . 6 (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
87exbidv 1920 . . . . 5 (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
98abbidv 2811 . . . 4 (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
109inteqd 4975 . . 3 (𝑣 = 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
11 df-cf 10010 . . 3 cf = (𝑣 ∈ On ↦ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))})
1210, 11fvmptg 7027 . 2 ((𝐴 ∈ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
133, 12mpdan 686 1 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  wss 3976   cint 4970  Oncon0 6395  cfv 6573  cardccrd 10004  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-cf 10010
This theorem is referenced by:  cfub  10318  cflm  10319  cardcf  10321  cflecard  10322  cfeq0  10325  cfsuc  10326  cff1  10327  cfflb  10328  cfval2  10329  cflim3  10331
  Copyright terms: Public domain W3C validator