MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval Structured version   Visualization version   GIF version

Theorem cfval 10200
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfval (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧

Proof of Theorem cfval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cflem 10198 . . 3 (𝐴 ∈ On → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
2 intexab 5301 . . 3 (∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
31, 2sylib 218 . 2 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
4 sseq2 3973 . . . . . . . 8 (𝑣 = 𝐴 → (𝑦𝑣𝑦𝐴))
5 raleq 3296 . . . . . . . 8 (𝑣 = 𝐴 → (∀𝑧𝑣𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
64, 5anbi12d 632 . . . . . . 7 (𝑣 = 𝐴 → ((𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤) ↔ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
76anbi2d 630 . . . . . 6 (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
87exbidv 1921 . . . . 5 (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
98abbidv 2795 . . . 4 (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
109inteqd 4915 . . 3 (𝑣 = 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
11 df-cf 9894 . . 3 cf = (𝑣 ∈ On ↦ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝑣 ∧ ∀𝑧𝑣𝑤𝑦 𝑧𝑤))})
1210, 11fvmptg 6966 . 2 ((𝐴 ∈ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
133, 12mpdan 687 1 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  wss 3914   cint 4910  Oncon0 6332  cfv 6511  cardccrd 9888  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-cf 9894
This theorem is referenced by:  cfub  10202  cflm  10203  cardcf  10205  cflecard  10206  cfeq0  10209  cfsuc  10210  cff1  10211  cfflb  10212  cfval2  10213  cflim3  10215
  Copyright terms: Public domain W3C validator