Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfval | Structured version Visualization version GIF version |
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfval | ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflem 9933 | . . 3 ⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | |
2 | intexab 5258 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) |
4 | sseq2 3943 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (𝑦 ⊆ 𝑣 ↔ 𝑦 ⊆ 𝐴)) | |
5 | raleq 3333 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | |
6 | 4, 5 | anbi12d 630 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → ((𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
7 | 6 | anbi2d 628 | . . . . . 6 ⊢ (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
8 | 7 | exbidv 1925 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
9 | 8 | abbidv 2808 | . . . 4 ⊢ (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
10 | 9 | inteqd 4881 | . . 3 ⊢ (𝑣 = 𝐴 → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
11 | df-cf 9630 | . . 3 ⊢ cf = (𝑣 ∈ On ↦ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | |
12 | 10, 11 | fvmptg 6855 | . 2 ⊢ ((𝐴 ∈ On ∧ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
13 | 3, 12 | mpdan 683 | 1 ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∩ cint 4876 Oncon0 6251 ‘cfv 6418 cardccrd 9624 cfccf 9626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-cf 9630 |
This theorem is referenced by: cfub 9936 cflm 9937 cardcf 9939 cflecard 9940 cfeq0 9943 cfsuc 9944 cff1 9945 cfflb 9946 cfval2 9947 cflim3 9949 |
Copyright terms: Public domain | W3C validator |