Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfval | Structured version Visualization version GIF version |
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfval | ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflem 10002 | . . 3 ⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | |
2 | intexab 5263 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) |
4 | sseq2 3947 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (𝑦 ⊆ 𝑣 ↔ 𝑦 ⊆ 𝐴)) | |
5 | raleq 3342 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | |
6 | 4, 5 | anbi12d 631 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → ((𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
7 | 6 | anbi2d 629 | . . . . . 6 ⊢ (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
8 | 7 | exbidv 1924 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
9 | 8 | abbidv 2807 | . . . 4 ⊢ (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
10 | 9 | inteqd 4884 | . . 3 ⊢ (𝑣 = 𝐴 → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
11 | df-cf 9699 | . . 3 ⊢ cf = (𝑣 ∈ On ↦ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | |
12 | 10, 11 | fvmptg 6873 | . 2 ⊢ ((𝐴 ∈ On ∧ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
13 | 3, 12 | mpdan 684 | 1 ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∩ cint 4879 Oncon0 6266 ‘cfv 6433 cardccrd 9693 cfccf 9695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-cf 9699 |
This theorem is referenced by: cfub 10005 cflm 10006 cardcf 10008 cflecard 10009 cfeq0 10012 cfsuc 10013 cff1 10014 cfflb 10015 cfval2 10016 cflim3 10018 |
Copyright terms: Public domain | W3C validator |