| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfval | Structured version Visualization version GIF version | ||
| Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cfval | ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflem 10128 | . . 3 ⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | |
| 2 | intexab 5282 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) |
| 4 | sseq2 3959 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (𝑦 ⊆ 𝑣 ↔ 𝑦 ⊆ 𝐴)) | |
| 5 | raleq 3287 | . . . . . . . 8 ⊢ (𝑣 = 𝐴 → (∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → ((𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) ↔ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 7 | 6 | anbi2d 630 | . . . . . 6 ⊢ (𝑣 = 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
| 8 | 7 | exbidv 1922 | . . . . 5 ⊢ (𝑣 = 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
| 9 | 8 | abbidv 2796 | . . . 4 ⊢ (𝑣 = 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| 10 | 9 | inteqd 4900 | . . 3 ⊢ (𝑣 = 𝐴 → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| 11 | df-cf 9826 | . . 3 ⊢ cf = (𝑣 ∈ On ↦ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝑣 ∧ ∀𝑧 ∈ 𝑣 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | |
| 12 | 10, 11 | fvmptg 6922 | . 2 ⊢ ((𝐴 ∈ On ∧ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ∈ V) → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| 13 | 3, 12 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3434 ⊆ wss 3900 ∩ cint 4895 Oncon0 6302 ‘cfv 6477 cardccrd 9820 cfccf 9822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-cf 9826 |
| This theorem is referenced by: cfub 10132 cflm 10133 cardcf 10135 cflecard 10136 cfeq0 10139 cfsuc 10140 cff1 10141 cfflb 10142 cfval2 10143 cflim3 10145 |
| Copyright terms: Public domain | W3C validator |