MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff Structured version   Visualization version   GIF version

Theorem cff 9935
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cff cf:On⟶On

Proof of Theorem cff
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cf 9630 . 2 cf = (𝑥 ∈ On ↦ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))})
2 cardon 9633 . . . . . . 7 (card‘𝑧) ∈ On
3 eleq1 2826 . . . . . . 7 (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On))
42, 3mpbiri 257 . . . . . 6 (𝑦 = (card‘𝑧) → 𝑦 ∈ On)
54adantr 480 . . . . 5 ((𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
65exlimiv 1934 . . . 4 (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
76abssi 3999 . . 3 {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On
8 cflem 9933 . . . 4 (𝑥 ∈ On → ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
9 abn0 4311 . . . 4 ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅ ↔ ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
108, 9sylibr 233 . . 3 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅)
11 oninton 7622 . . 3 (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅) → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
127, 10, 11sylancr 586 . 2 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
131, 12fmpti 6968 1 cf:On⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   cint 4876  Oncon0 6251  wf 6414  cfv 6418  cardccrd 9624  cfccf 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-card 9628  df-cf 9630
This theorem is referenced by:  cfub  9936  cardcf  9939  cflecard  9940  cfle  9941  cflim2  9950  cfidm  9962
  Copyright terms: Public domain W3C validator