![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cff | Structured version Visualization version GIF version |
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cff | ⊢ cf:On⟶On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cf 9923 | . 2 ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))}) | |
2 | cardon 9926 | . . . . . . 7 ⊢ (card‘𝑧) ∈ On | |
3 | eleq1 2822 | . . . . . . 7 ⊢ (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On)) | |
4 | 2, 3 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = (card‘𝑧) → 𝑦 ∈ On) |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
6 | 5 | exlimiv 1934 | . . . 4 ⊢ (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
7 | 6 | abssi 4065 | . . 3 ⊢ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On |
8 | cflem 10228 | . . . 4 ⊢ (𝑥 ∈ On → ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
9 | abn0 4378 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅ ↔ ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) |
11 | oninton 7770 | . . 3 ⊢ (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) | |
12 | 7, 10, 11 | sylancr 588 | . 2 ⊢ (𝑥 ∈ On → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) |
13 | 1, 12 | fmpti 7099 | 1 ⊢ cf:On⟶On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3946 ∅c0 4320 ∩ cint 4946 Oncon0 6356 ⟶wf 6531 ‘cfv 6535 cardccrd 9917 cfccf 9919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6359 df-on 6360 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-fv 6543 df-card 9921 df-cf 9923 |
This theorem is referenced by: cfub 10231 cardcf 10234 cflecard 10235 cfle 10236 cflim2 10245 cfidm 10257 |
Copyright terms: Public domain | W3C validator |