| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cff | Structured version Visualization version GIF version | ||
| Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cff | ⊢ cf:On⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cf 9829 | . 2 ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))}) | |
| 2 | cardon 9832 | . . . . . . 7 ⊢ (card‘𝑧) ∈ On | |
| 3 | eleq1 2819 | . . . . . . 7 ⊢ (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On)) | |
| 4 | 2, 3 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = (card‘𝑧) → 𝑦 ∈ On) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 6 | 5 | exlimiv 1931 | . . . 4 ⊢ (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 7 | 6 | abssi 4015 | . . 3 ⊢ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On |
| 8 | cflem 10131 | . . . 4 ⊢ (𝑥 ∈ On → ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 9 | abn0 4330 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅ ↔ ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) |
| 11 | oninton 7723 | . . 3 ⊢ (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) | |
| 12 | 7, 10, 11 | sylancr 587 | . 2 ⊢ (𝑥 ∈ On → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) |
| 13 | 1, 12 | fmpti 7040 | 1 ⊢ cf:On⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4278 ∩ cint 4892 Oncon0 6301 ⟶wf 6472 ‘cfv 6476 cardccrd 9823 cfccf 9825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-card 9827 df-cf 9829 |
| This theorem is referenced by: cfub 10135 cardcf 10138 cflecard 10139 cfle 10140 cflim2 10149 cfidm 10161 |
| Copyright terms: Public domain | W3C validator |