![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cff | Structured version Visualization version GIF version |
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cff | ⊢ cf:On⟶On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cf 9979 | . 2 ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))}) | |
2 | cardon 9982 | . . . . . . 7 ⊢ (card‘𝑧) ∈ On | |
3 | eleq1 2827 | . . . . . . 7 ⊢ (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On)) | |
4 | 2, 3 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = (card‘𝑧) → 𝑦 ∈ On) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
6 | 5 | exlimiv 1928 | . . . 4 ⊢ (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
7 | 6 | abssi 4080 | . . 3 ⊢ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On |
8 | cflem 10283 | . . . 4 ⊢ (𝑥 ∈ On → ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
9 | abn0 4391 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅ ↔ ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) |
11 | oninton 7815 | . . 3 ⊢ (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) | |
12 | 7, 10, 11 | sylancr 587 | . 2 ⊢ (𝑥 ∈ On → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) |
13 | 1, 12 | fmpti 7132 | 1 ⊢ cf:On⟶On |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∅c0 4339 ∩ cint 4951 Oncon0 6386 ⟶wf 6559 ‘cfv 6563 cardccrd 9973 cfccf 9975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-card 9977 df-cf 9979 |
This theorem is referenced by: cfub 10287 cardcf 10290 cflecard 10291 cfle 10292 cflim2 10301 cfidm 10313 |
Copyright terms: Public domain | W3C validator |