| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cff | Structured version Visualization version GIF version | ||
| Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cff | ⊢ cf:On⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cf 9901 | . 2 ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))}) | |
| 2 | cardon 9904 | . . . . . . 7 ⊢ (card‘𝑧) ∈ On | |
| 3 | eleq1 2817 | . . . . . . 7 ⊢ (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On)) | |
| 4 | 2, 3 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = (card‘𝑧) → 𝑦 ∈ On) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 6 | 5 | exlimiv 1930 | . . . 4 ⊢ (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 7 | 6 | abssi 4036 | . . 3 ⊢ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On |
| 8 | cflem 10205 | . . . 4 ⊢ (𝑥 ∈ On → ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 9 | abn0 4351 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅ ↔ ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) |
| 11 | oninton 7774 | . . 3 ⊢ (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) | |
| 12 | 7, 10, 11 | sylancr 587 | . 2 ⊢ (𝑥 ∈ On → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) |
| 13 | 1, 12 | fmpti 7087 | 1 ⊢ cf:On⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 ∩ cint 4913 Oncon0 6335 ⟶wf 6510 ‘cfv 6514 cardccrd 9895 cfccf 9897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-card 9899 df-cf 9901 |
| This theorem is referenced by: cfub 10209 cardcf 10212 cflecard 10213 cfle 10214 cflim2 10223 cfidm 10235 |
| Copyright terms: Public domain | W3C validator |