| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cff | Structured version Visualization version GIF version | ||
| Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cff | ⊢ cf:On⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cf 9870 | . 2 ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))}) | |
| 2 | cardon 9873 | . . . . . . 7 ⊢ (card‘𝑧) ∈ On | |
| 3 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On)) | |
| 4 | 2, 3 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = (card‘𝑧) → 𝑦 ∈ On) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 6 | 5 | exlimiv 1930 | . . . 4 ⊢ (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣)) → 𝑦 ∈ On) |
| 7 | 6 | abssi 4029 | . . 3 ⊢ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On |
| 8 | cflem 10174 | . . . 4 ⊢ (𝑥 ∈ On → ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 9 | abn0 4344 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅ ↔ ∃𝑦∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) |
| 11 | oninton 7751 | . . 3 ⊢ (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) | |
| 12 | 7, 10, 11 | sylancr 587 | . 2 ⊢ (𝑥 ∈ On → ∩ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑤 ∈ 𝑥 ∃𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣))} ∈ On) |
| 13 | 1, 12 | fmpti 7066 | 1 ⊢ cf:On⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ∩ cint 4906 Oncon0 6320 ⟶wf 6495 ‘cfv 6499 cardccrd 9864 cfccf 9866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-card 9868 df-cf 9870 |
| This theorem is referenced by: cfub 10178 cardcf 10181 cflecard 10182 cfle 10183 cflim2 10192 cfidm 10204 |
| Copyright terms: Public domain | W3C validator |