MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff Structured version   Visualization version   GIF version

Theorem cff 10230
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cff cf:On⟶On

Proof of Theorem cff
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cf 9923 . 2 cf = (𝑥 ∈ On ↦ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))})
2 cardon 9926 . . . . . . 7 (card‘𝑧) ∈ On
3 eleq1 2822 . . . . . . 7 (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On))
42, 3mpbiri 258 . . . . . 6 (𝑦 = (card‘𝑧) → 𝑦 ∈ On)
54adantr 482 . . . . 5 ((𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
65exlimiv 1934 . . . 4 (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
76abssi 4065 . . 3 {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On
8 cflem 10228 . . . 4 (𝑥 ∈ On → ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
9 abn0 4378 . . . 4 ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅ ↔ ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
108, 9sylibr 233 . . 3 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅)
11 oninton 7770 . . 3 (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅) → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
127, 10, 11sylancr 588 . 2 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
131, 12fmpti 7099 1 cf:On⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2941  wral 3062  wrex 3071  wss 3946  c0 4320   cint 4946  Oncon0 6356  wf 6531  cfv 6535  cardccrd 9917  cfccf 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6359  df-on 6360  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-fv 6543  df-card 9921  df-cf 9923
This theorem is referenced by:  cfub  10231  cardcf  10234  cflecard  10235  cfle  10236  cflim2  10245  cfidm  10257
  Copyright terms: Public domain W3C validator