MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff Structured version   Visualization version   GIF version

Theorem cff 10317
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cff cf:On⟶On

Proof of Theorem cff
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cf 10010 . 2 cf = (𝑥 ∈ On ↦ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))})
2 cardon 10013 . . . . . . 7 (card‘𝑧) ∈ On
3 eleq1 2832 . . . . . . 7 (𝑦 = (card‘𝑧) → (𝑦 ∈ On ↔ (card‘𝑧) ∈ On))
42, 3mpbiri 258 . . . . . 6 (𝑦 = (card‘𝑧) → 𝑦 ∈ On)
54adantr 480 . . . . 5 ((𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
65exlimiv 1929 . . . 4 (∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)) → 𝑦 ∈ On)
76abssi 4093 . . 3 {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On
8 cflem 10314 . . . 4 (𝑥 ∈ On → ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
9 abn0 4408 . . . 4 ({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅ ↔ ∃𝑦𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣)))
108, 9sylibr 234 . . 3 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅)
11 oninton 7831 . . 3 (({𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ⊆ On ∧ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ≠ ∅) → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
127, 10, 11sylancr 586 . 2 (𝑥 ∈ On → {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑤𝑥𝑣𝑧 𝑤𝑣))} ∈ On)
131, 12fmpti 7146 1 cf:On⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   cint 4970  Oncon0 6395  wf 6569  cfv 6573  cardccrd 10004  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-card 10008  df-cf 10010
This theorem is referenced by:  cfub  10318  cardcf  10321  cflecard  10322  cfle  10323  cflim2  10332  cfidm  10344
  Copyright terms: Public domain W3C validator