MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfval Structured version   Visualization version   GIF version

Theorem cfilfval 25312
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilfval (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Distinct variable groups:   𝑥,𝑦,𝑓,𝑋   𝐷,𝑓,𝑥,𝑦

Proof of Theorem cfilfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6940 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3991 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 dmeq 5917 . . . . . . 7 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5919 . . . . . 6 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
54fveq2d 6911 . . . . 5 (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷))
6 imaeq1 6075 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦)))
76sseq1d 4027 . . . . . . 7 (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
87rexbidv 3177 . . . . . 6 (𝑑 = 𝐷 → (∃𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
98ralbidv 3176 . . . . 5 (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
105, 9rabeqbidv 3452 . . . 4 (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
11 df-cfil 25303 . . . 4 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
12 fvex 6920 . . . . 5 (Fil‘dom dom 𝐷) ∈ V
1312rabex 5345 . . . 4 {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V
1410, 11, 13fvmpt 7016 . . 3 (𝐷 ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
152, 14syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
16 xmetdmdm 24361 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
1716fveq2d 6911 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷))
1817rabeqdv 3449 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
1915, 18eqtr4d 2778 1 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963   cuni 4912   × cxp 5687  dom cdm 5689  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  0cc0 11153  +crp 13032  [,)cico 13386  ∞Metcxmet 21367  Filcfil 23869  CauFilccfil 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-xr 11297  df-xmet 21375  df-cfil 25303
This theorem is referenced by:  iscfil  25313
  Copyright terms: Public domain W3C validator