| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfilfval | Structured version Visualization version GIF version | ||
| Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cfilfval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6920 | . . . 4 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
| 2 | 1 | sseli 3961 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
| 3 | dmeq 5896 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) | |
| 4 | 3 | dmeqd 5898 | . . . . . 6 ⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
| 5 | 4 | fveq2d 6891 | . . . . 5 ⊢ (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷)) |
| 6 | imaeq1 6055 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦))) | |
| 7 | 6 | sseq1d 3997 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 8 | 7 | rexbidv 3166 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 9 | 8 | ralbidv 3165 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 10 | 5, 9 | rabeqbidv 3439 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 11 | df-cfil 25244 | . . . 4 ⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | |
| 12 | fvex 6900 | . . . . 5 ⊢ (Fil‘dom dom 𝐷) ∈ V | |
| 13 | 12 | rabex 5321 | . . . 4 ⊢ {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V |
| 14 | 10, 11, 13 | fvmpt 6997 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 15 | 2, 14 | syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 16 | xmetdmdm 24309 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | |
| 17 | 16 | fveq2d 6891 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷)) |
| 18 | 17 | rabeqdv 3436 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 19 | 15, 18 | eqtr4d 2772 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3420 ⊆ wss 3933 ∪ cuni 4889 × cxp 5665 dom cdm 5667 ran crn 5668 “ cima 5670 ‘cfv 6542 (class class class)co 7414 0cc0 11138 ℝ+crp 13017 [,)cico 13372 ∞Metcxmet 21316 Filcfil 23818 CauFilccfil 25241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 df-xr 11282 df-xmet 21324 df-cfil 25244 |
| This theorem is referenced by: iscfil 25254 |
| Copyright terms: Public domain | W3C validator |