MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfval Structured version   Visualization version   GIF version

Theorem cfilfval 25180
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilfval (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Distinct variable groups:   𝑥,𝑦,𝑓,𝑋   𝐷,𝑓,𝑥,𝑦

Proof of Theorem cfilfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6857 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3933 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 dmeq 5850 . . . . . . 7 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5852 . . . . . 6 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
54fveq2d 6830 . . . . 5 (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷))
6 imaeq1 6010 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦)))
76sseq1d 3969 . . . . . . 7 (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
87rexbidv 3153 . . . . . 6 (𝑑 = 𝐷 → (∃𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
98ralbidv 3152 . . . . 5 (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
105, 9rabeqbidv 3415 . . . 4 (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
11 df-cfil 25171 . . . 4 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
12 fvex 6839 . . . . 5 (Fil‘dom dom 𝐷) ∈ V
1312rabex 5281 . . . 4 {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V
1410, 11, 13fvmpt 6934 . . 3 (𝐷 ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
152, 14syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
16 xmetdmdm 24239 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
1716fveq2d 6830 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷))
1817rabeqdv 3412 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
1915, 18eqtr4d 2767 1 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905   cuni 4861   × cxp 5621  dom cdm 5623  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  0cc0 11028  +crp 12911  [,)cico 13268  ∞Metcxmet 21264  Filcfil 23748  CauFilccfil 25168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-xr 11172  df-xmet 21272  df-cfil 25171
This theorem is referenced by:  iscfil  25181
  Copyright terms: Public domain W3C validator