| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfilfval | Structured version Visualization version GIF version | ||
| Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cfilfval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6853 | . . . 4 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
| 2 | 1 | sseli 3930 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
| 3 | dmeq 5843 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) | |
| 4 | 3 | dmeqd 5845 | . . . . . 6 ⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
| 5 | 4 | fveq2d 6826 | . . . . 5 ⊢ (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷)) |
| 6 | imaeq1 6004 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦))) | |
| 7 | 6 | sseq1d 3966 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 8 | 7 | rexbidv 3156 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 9 | 8 | ralbidv 3155 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 10 | 5, 9 | rabeqbidv 3413 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 11 | df-cfil 25183 | . . . 4 ⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | |
| 12 | fvex 6835 | . . . . 5 ⊢ (Fil‘dom dom 𝐷) ∈ V | |
| 13 | 12 | rabex 5277 | . . . 4 ⊢ {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V |
| 14 | 10, 11, 13 | fvmpt 6929 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 15 | 2, 14 | syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 16 | xmetdmdm 24251 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | |
| 17 | 16 | fveq2d 6826 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷)) |
| 18 | 17 | rabeqdv 3410 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 19 | 15, 18 | eqtr4d 2769 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∪ cuni 4859 × cxp 5614 dom cdm 5616 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℝ+crp 12890 [,)cico 13247 ∞Metcxmet 21277 Filcfil 23761 CauFilccfil 25180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-xr 11150 df-xmet 21285 df-cfil 25183 |
| This theorem is referenced by: iscfil 25193 |
| Copyright terms: Public domain | W3C validator |