MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfval Structured version   Visualization version   GIF version

Theorem cfilfval 24428
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilfval (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Distinct variable groups:   𝑥,𝑦,𝑓,𝑋   𝐷,𝑓,𝑥,𝑦

Proof of Theorem cfilfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6803 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3917 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 dmeq 5812 . . . . . . 7 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5814 . . . . . 6 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
54fveq2d 6778 . . . . 5 (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷))
6 imaeq1 5964 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦)))
76sseq1d 3952 . . . . . . 7 (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
87rexbidv 3226 . . . . . 6 (𝑑 = 𝐷 → (∃𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
98ralbidv 3112 . . . . 5 (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
105, 9rabeqbidv 3420 . . . 4 (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
11 df-cfil 24419 . . . 4 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
12 fvex 6787 . . . . 5 (Fil‘dom dom 𝐷) ∈ V
1312rabex 5256 . . . 4 {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V
1410, 11, 13fvmpt 6875 . . 3 (𝐷 ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
152, 14syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
16 xmetdmdm 23488 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
1716fveq2d 6778 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷))
1817rabeqdv 3419 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
1915, 18eqtr4d 2781 1 (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887   cuni 4839   × cxp 5587  dom cdm 5589  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  0cc0 10871  +crp 12730  [,)cico 13081  ∞Metcxmet 20582  Filcfil 22996  CauFilccfil 24416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-xr 11013  df-xmet 20590  df-cfil 24419
This theorem is referenced by:  iscfil  24429
  Copyright terms: Public domain W3C validator