Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfilfval | Structured version Visualization version GIF version |
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cfilfval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6785 | . . . 4 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
2 | 1 | sseli 3913 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
3 | dmeq 5801 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) | |
4 | 3 | dmeqd 5803 | . . . . . 6 ⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
5 | 4 | fveq2d 6760 | . . . . 5 ⊢ (𝑑 = 𝐷 → (Fil‘dom dom 𝑑) = (Fil‘dom dom 𝐷)) |
6 | imaeq1 5953 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (𝑑 “ (𝑦 × 𝑦)) = (𝐷 “ (𝑦 × 𝑦))) | |
7 | 6 | sseq1d 3948 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → ((𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
8 | 7 | rexbidv 3225 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
9 | 8 | ralbidv 3120 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
10 | 5, 9 | rabeqbidv 3410 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
11 | df-cfil 24324 | . . . 4 ⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | |
12 | fvex 6769 | . . . . 5 ⊢ (Fil‘dom dom 𝐷) ∈ V | |
13 | 12 | rabex 5251 | . . . 4 ⊢ {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} ∈ V |
14 | 10, 11, 13 | fvmpt 6857 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
15 | 2, 14 | syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
16 | xmetdmdm 23396 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | |
17 | 16 | fveq2d 6760 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (Fil‘𝑋) = (Fil‘dom dom 𝐷)) |
18 | 17 | rabeqdv 3409 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} = {𝑓 ∈ (Fil‘dom dom 𝐷) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
19 | 15, 18 | eqtr4d 2781 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∪ cuni 4836 × cxp 5578 dom cdm 5580 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℝ+crp 12659 [,)cico 13010 ∞Metcxmet 20495 Filcfil 22904 CauFilccfil 24321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-xr 10944 df-xmet 20503 df-cfil 24324 |
This theorem is referenced by: iscfil 24334 |
Copyright terms: Public domain | W3C validator |