MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfili Structured version   Visualization version   GIF version

Theorem cfili 25316
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfili ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝑅,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem cfili
Dummy variables 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cfil 25303 . . . . . . 7 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
21mptrcl 7025 . . . . . 6 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
3 xmetunirn 24363 . . . . . 6 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
42, 3sylib 218 . . . . 5 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
5 iscfil2 25314 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
64, 5syl 17 . . . 4 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
76ibi 267 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟))
87simprd 495 . 2 (𝐹 ∈ (CauFil‘𝐷) → ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)
9 breq2 5152 . . . . 5 (𝑟 = 𝑅 → ((𝑦𝐷𝑧) < 𝑟 ↔ (𝑦𝐷𝑧) < 𝑅))
1092ralbidv 3219 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1110rexbidv 3177 . . 3 (𝑟 = 𝑅 → (∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1211rspccva 3621 . 2 ((∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
138, 12sylan 580 1 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963   cuni 4912   class class class wbr 5148   × cxp 5687  dom cdm 5689  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  0cc0 11153   < clt 11293  +crp 13032  [,)cico 13386  ∞Metcxmet 21367  Filcfil 23869  CauFilccfil 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-xmet 21375  df-fbas 21379  df-fil 23870  df-cfil 25303
This theorem is referenced by:  cfil3i  25317  fgcfil  25319  iscmet3  25341  cfilres  25344
  Copyright terms: Public domain W3C validator