MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfili Structured version   Visualization version   GIF version

Theorem cfili 25193
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfili ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝑅,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem cfili
Dummy variables 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cfil 25180 . . . . . . 7 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
21mptrcl 6938 . . . . . 6 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
3 xmetunirn 24250 . . . . . 6 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
42, 3sylib 218 . . . . 5 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
5 iscfil2 25191 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
64, 5syl 17 . . . 4 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
76ibi 267 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟))
87simprd 495 . 2 (𝐹 ∈ (CauFil‘𝐷) → ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)
9 breq2 5095 . . . . 5 (𝑟 = 𝑅 → ((𝑦𝐷𝑧) < 𝑟 ↔ (𝑦𝐷𝑧) < 𝑅))
1092ralbidv 3196 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1110rexbidv 3156 . . 3 (𝑟 = 𝑅 → (∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1211rspccva 3576 . 2 ((∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
138, 12sylan 580 1 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3902   cuni 4859   class class class wbr 5091   × cxp 5614  dom cdm 5616  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  0cc0 11003   < clt 11143  +crp 12887  [,)cico 13244  ∞Metcxmet 21274  Filcfil 23758  CauFilccfil 25177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-xmet 21282  df-fbas 21286  df-fil 23759  df-cfil 25180
This theorem is referenced by:  cfil3i  25194  fgcfil  25196  iscmet3  25218  cfilres  25221
  Copyright terms: Public domain W3C validator