MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Visualization version   GIF version

Theorem cfilfcls 25308
Description: Similar to ultrafilters (uffclsflim 24039), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1 𝐽 = (MetOpen‘𝐷)
cfilfcls.2 𝑋 = dom dom 𝐷
Assertion
Ref Expression
cfilfcls (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))

Proof of Theorem cfilfcls
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
21fclselbas 24024 . . . . . . 7 (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 𝐽)
32adantl 481 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 𝐽)
4 df-cfil 25289 . . . . . . . . . . . 12 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
54mptrcl 7025 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
6 xmetunirn 24347 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
75, 6sylib 218 . . . . . . . . . 10 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
8 cfilfcls.2 . . . . . . . . . . 11 𝑋 = dom dom 𝐷
98fveq2i 6909 . . . . . . . . . 10 (∞Met‘𝑋) = (∞Met‘dom dom 𝐷)
107, 9eleqtrrdi 2852 . . . . . . . . 9 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘𝑋))
1110adantr 480 . . . . . . . 8 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
12 cfilfcls.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1312mopntopon 24449 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
15 toponuni 22920 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1614, 15syl 17 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
173, 16eleqtrrd 2844 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥𝑋)
1812mopni2 24506 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
19183expb 1121 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
2011, 19sylan 580 . . . . . . . 8 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
21 cfilfil 25301 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2210, 21mpancom 688 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐹 ∈ (Fil‘𝑋))
2322adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
2423ad2antrr 726 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
2511adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
26 simpll 767 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐹 ∈ (CauFil‘𝐷))
27 rphalfcl 13062 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2827adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
29 rphalfcl 13062 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 cfil3i 25303 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3225, 26, 30, 31syl3anc 1373 . . . . . . . . . . 11 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3323ad2antrr 726 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
34 simprr 773 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3525adantr 480 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
3617ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥𝑋)
37 rpxr 13044 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3837ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑟 ∈ ℝ*)
39 blssm 24428 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4035, 36, 38, 39syl3anc 1373 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
41 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝐽 fClus 𝐹))
4228adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ+)
4342rpxrd 13078 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ*)
4412blopn 24513 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
4535, 36, 43, 44syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
46 blcntr 24423 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
4735, 36, 42, 46syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
48 fclsopni 24023 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
4941, 45, 47, 34, 48syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
50 n0 4353 . . . . . . . . . . . . . 14 (((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
52 elin 3967 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ↔ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5335adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
54 simplrl 777 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑦𝑋)
5542adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ+)
5655rpred 13077 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ)
57 simprr 773 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))
58 blhalf 24415 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑟 / 2) ∈ ℝ ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
5953, 54, 56, 57, 58syl22anc 839 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
60 blssm 24428 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6135, 36, 43, 60syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6261sselda 3983 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → 𝑧𝑋)
6362adantrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧𝑋)
64 simpllr 776 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ+)
6564rpred 13077 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ)
66 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
6755rpxrd 13078 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ*)
6836adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥𝑋)
69 blcom 24404 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7053, 67, 68, 63, 69syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7166, 70mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))
72 blhalf 24415 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7353, 63, 65, 71, 72syl22anc 839 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7459, 73sstrd 3994 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7574ex 412 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7652, 75biimtrid 242 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7776exlimdv 1933 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7851, 77mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
79 filss 23861 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8033, 34, 40, 78, 79syl13anc 1374 . . . . . . . . . . 11 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8132, 80rexlimddv 3161 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8281ad2ant2r 747 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
83 toponss 22933 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
8483adantrr 717 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8514, 84sylan 580 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8685adantr 480 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
87 simprr 773 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
88 filss 23861 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
8924, 82, 86, 87, 88syl13anc 1374 . . . . . . . 8 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
9020, 89rexlimddv 3161 . . . . . . 7 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
9190expr 456 . . . . . 6 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
9291ralrimiva 3146 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
93 flimopn 23983 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9414, 23, 93syl2anc 584 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9517, 92, 94mpbir2and 713 . . . 4 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
9695ex 412 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9796ssrdv 3989 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹))
98 flimfcls 24034 . . 3 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
9998a1i 11 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹))
10097, 99eqssd 4001 1 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  c0 4333   cuni 4907   × cxp 5683  dom cdm 5685  ran crn 5686  cima 5688  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  *cxr 11294   / cdiv 11920  2c2 12321  +crp 13034  [,)cico 13389  ∞Metcxmet 21349  ballcbl 21351  MetOpencmopn 21354  TopOnctopon 22916  Filcfil 23853   fLim cflim 23942   fClus cfcls 23944  CauFilccfil 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-fbas 21361  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-fil 23854  df-flim 23947  df-fcls 23949  df-cfil 25289
This theorem is referenced by:  relcmpcmet  25352
  Copyright terms: Public domain W3C validator