MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Visualization version   GIF version

Theorem cfilfcls 23880
Description: Similar to ultrafilters (uffclsflim 22642), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1 𝐽 = (MetOpen‘𝐷)
cfilfcls.2 𝑋 = dom dom 𝐷
Assertion
Ref Expression
cfilfcls (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))

Proof of Theorem cfilfcls
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . 8 𝐽 = 𝐽
21fclselbas 22627 . . . . . . 7 (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 𝐽)
32adantl 484 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 𝐽)
4 df-cfil 23861 . . . . . . . . . . . 12 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
54mptrcl 6780 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
6 xmetunirn 22950 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
75, 6sylib 220 . . . . . . . . . 10 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
8 cfilfcls.2 . . . . . . . . . . 11 𝑋 = dom dom 𝐷
98fveq2i 6676 . . . . . . . . . 10 (∞Met‘𝑋) = (∞Met‘dom dom 𝐷)
107, 9eleqtrrdi 2927 . . . . . . . . 9 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘𝑋))
1110adantr 483 . . . . . . . 8 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
12 cfilfcls.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1312mopntopon 23052 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
15 toponuni 21525 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1614, 15syl 17 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
173, 16eleqtrrd 2919 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥𝑋)
1812mopni2 23106 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
19183expb 1116 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
2011, 19sylan 582 . . . . . . . 8 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
21 cfilfil 23873 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2210, 21mpancom 686 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐹 ∈ (Fil‘𝑋))
2322adantr 483 . . . . . . . . . 10 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
2423ad2antrr 724 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
2511adantr 483 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
26 simpll 765 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐹 ∈ (CauFil‘𝐷))
27 rphalfcl 12419 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2827adantl 484 . . . . . . . . . . . . 13 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
29 rphalfcl 12419 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 cfil3i 23875 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3225, 26, 30, 31syl3anc 1367 . . . . . . . . . . 11 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3323ad2antrr 724 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
34 simprr 771 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3525adantr 483 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
3617ad2antrr 724 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥𝑋)
37 rpxr 12401 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3837ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑟 ∈ ℝ*)
39 blssm 23031 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4035, 36, 38, 39syl3anc 1367 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
41 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝐽 fClus 𝐹))
4228adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ+)
4342rpxrd 12435 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ*)
4412blopn 23113 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
4535, 36, 43, 44syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
46 blcntr 23026 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
4735, 36, 42, 46syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
48 fclsopni 22626 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
4941, 45, 47, 34, 48syl13anc 1368 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
50 n0 4313 . . . . . . . . . . . . . 14 (((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5149, 50sylib 220 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
52 elin 4172 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ↔ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5335adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
54 simplrl 775 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑦𝑋)
5542adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ+)
5655rpred 12434 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ)
57 simprr 771 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))
58 blhalf 23018 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑟 / 2) ∈ ℝ ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
5953, 54, 56, 57, 58syl22anc 836 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
60 blssm 23031 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6135, 36, 43, 60syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6261sselda 3970 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → 𝑧𝑋)
6362adantrr 715 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧𝑋)
64 simpllr 774 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ+)
6564rpred 12434 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ)
66 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
6755rpxrd 12435 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ*)
6836adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥𝑋)
69 blcom 23007 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7053, 67, 68, 63, 69syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7166, 70mpbid 234 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))
72 blhalf 23018 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7353, 63, 65, 71, 72syl22anc 836 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7459, 73sstrd 3980 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7574ex 415 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7652, 75syl5bi 244 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7776exlimdv 1933 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7851, 77mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
79 filss 22464 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8033, 34, 40, 78, 79syl13anc 1368 . . . . . . . . . . 11 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8132, 80rexlimddv 3294 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8281ad2ant2r 745 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
83 toponss 21538 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
8483adantrr 715 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8514, 84sylan 582 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8685adantr 483 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
87 simprr 771 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
88 filss 22464 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
8924, 82, 86, 87, 88syl13anc 1368 . . . . . . . 8 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
9020, 89rexlimddv 3294 . . . . . . 7 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
9190expr 459 . . . . . 6 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
9291ralrimiva 3185 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
93 flimopn 22586 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9414, 23, 93syl2anc 586 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9517, 92, 94mpbir2and 711 . . . 4 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
9695ex 415 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9796ssrdv 3976 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹))
98 flimfcls 22637 . . 3 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
9998a1i 11 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹))
10097, 99eqssd 3987 1 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3019  wral 3141  wrex 3142  {crab 3145  cin 3938  wss 3939  c0 4294   cuni 4841   × cxp 5556  dom cdm 5558  ran crn 5559  cima 5561  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  *cxr 10677   / cdiv 11300  2c2 11695  +crp 12392  [,)cico 12743  ∞Metcxmet 20533  ballcbl 20535  MetOpencmopn 20538  TopOnctopon 21521  Filcfil 22456   fLim cflim 22545   fClus cfcls 22547  CauFilccfil 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-bl 20543  df-mopn 20544  df-fbas 20545  df-top 21505  df-topon 21522  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-fil 22457  df-flim 22550  df-fcls 22552  df-cfil 23861
This theorem is referenced by:  relcmpcmet  23924
  Copyright terms: Public domain W3C validator