MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Visualization version   GIF version

Theorem cfilfcls 25322
Description: Similar to ultrafilters (uffclsflim 24055), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1 𝐽 = (MetOpen‘𝐷)
cfilfcls.2 𝑋 = dom dom 𝐷
Assertion
Ref Expression
cfilfcls (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))

Proof of Theorem cfilfcls
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 𝐽 = 𝐽
21fclselbas 24040 . . . . . . 7 (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 𝐽)
32adantl 481 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 𝐽)
4 df-cfil 25303 . . . . . . . . . . . 12 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
54mptrcl 7025 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
6 xmetunirn 24363 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
75, 6sylib 218 . . . . . . . . . 10 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
8 cfilfcls.2 . . . . . . . . . . 11 𝑋 = dom dom 𝐷
98fveq2i 6910 . . . . . . . . . 10 (∞Met‘𝑋) = (∞Met‘dom dom 𝐷)
107, 9eleqtrrdi 2850 . . . . . . . . 9 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘𝑋))
1110adantr 480 . . . . . . . 8 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
12 cfilfcls.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1312mopntopon 24465 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
15 toponuni 22936 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1614, 15syl 17 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
173, 16eleqtrrd 2842 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥𝑋)
1812mopni2 24522 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
19183expb 1119 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
2011, 19sylan 580 . . . . . . . 8 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
21 cfilfil 25315 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2210, 21mpancom 688 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐹 ∈ (Fil‘𝑋))
2322adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
2423ad2antrr 726 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
2511adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
26 simpll 767 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐹 ∈ (CauFil‘𝐷))
27 rphalfcl 13060 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2827adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
29 rphalfcl 13060 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 cfil3i 25317 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3225, 26, 30, 31syl3anc 1370 . . . . . . . . . . 11 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3323ad2antrr 726 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
34 simprr 773 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3525adantr 480 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
3617ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥𝑋)
37 rpxr 13042 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3837ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑟 ∈ ℝ*)
39 blssm 24444 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4035, 36, 38, 39syl3anc 1370 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
41 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝐽 fClus 𝐹))
4228adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ+)
4342rpxrd 13076 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ*)
4412blopn 24529 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
4535, 36, 43, 44syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
46 blcntr 24439 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
4735, 36, 42, 46syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
48 fclsopni 24039 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
4941, 45, 47, 34, 48syl13anc 1371 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
50 n0 4359 . . . . . . . . . . . . . 14 (((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5149, 50sylib 218 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
52 elin 3979 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ↔ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5335adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
54 simplrl 777 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑦𝑋)
5542adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ+)
5655rpred 13075 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ)
57 simprr 773 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))
58 blhalf 24431 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑟 / 2) ∈ ℝ ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
5953, 54, 56, 57, 58syl22anc 839 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
60 blssm 24444 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6135, 36, 43, 60syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6261sselda 3995 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → 𝑧𝑋)
6362adantrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧𝑋)
64 simpllr 776 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ+)
6564rpred 13075 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ)
66 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
6755rpxrd 13076 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ*)
6836adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥𝑋)
69 blcom 24420 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7053, 67, 68, 63, 69syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7166, 70mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))
72 blhalf 24431 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7353, 63, 65, 71, 72syl22anc 839 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7459, 73sstrd 4006 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7574ex 412 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7652, 75biimtrid 242 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7776exlimdv 1931 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7851, 77mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
79 filss 23877 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8033, 34, 40, 78, 79syl13anc 1371 . . . . . . . . . . 11 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8132, 80rexlimddv 3159 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8281ad2ant2r 747 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
83 toponss 22949 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
8483adantrr 717 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8514, 84sylan 580 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8685adantr 480 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
87 simprr 773 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
88 filss 23877 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
8924, 82, 86, 87, 88syl13anc 1371 . . . . . . . 8 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
9020, 89rexlimddv 3159 . . . . . . 7 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
9190expr 456 . . . . . 6 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
9291ralrimiva 3144 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
93 flimopn 23999 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9414, 23, 93syl2anc 584 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9517, 92, 94mpbir2and 713 . . . 4 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
9695ex 412 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9796ssrdv 4001 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹))
98 flimfcls 24050 . . 3 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
9998a1i 11 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹))
10097, 99eqssd 4013 1 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  c0 4339   cuni 4912   × cxp 5687  dom cdm 5689  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  *cxr 11292   / cdiv 11918  2c2 12319  +crp 13032  [,)cico 13386  ∞Metcxmet 21367  ballcbl 21369  MetOpencmopn 21372  TopOnctopon 22932  Filcfil 23869   fLim cflim 23958   fClus cfcls 23960  CauFilccfil 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-bl 21377  df-mopn 21378  df-fbas 21379  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-fil 23870  df-flim 23963  df-fcls 23965  df-cfil 25303
This theorem is referenced by:  relcmpcmet  25366
  Copyright terms: Public domain W3C validator