Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | 1 | fclselbas 23075 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ ∪ 𝐽) |
3 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
4 | | df-cfil 24324 |
. . . . . . . . . . . 12
⊢ CauFil =
(𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
5 | 4 | mptrcl 6866 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ ∪ ran
∞Met) |
6 | | xmetunirn 23398 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
7 | 5, 6 | sylib 217 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
8 | | cfilfcls.2 |
. . . . . . . . . . 11
⊢ 𝑋 = dom dom 𝐷 |
9 | 8 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(∞Met‘𝑋)
= (∞Met‘dom dom 𝐷) |
10 | 7, 9 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘𝑋)) |
11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐷 ∈ (∞Met‘𝑋)) |
12 | | cfilfcls.1 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
13 | 12 | mopntopon 23500 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | 11, 13 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋)) |
15 | | toponuni 21971 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑋 = ∪ 𝐽) |
17 | 3, 16 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ 𝑋) |
18 | 12 | mopni2 23555 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦) |
19 | 18 | 3expb 1118 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦) |
20 | 11, 19 | sylan 579 |
. . . . . . . 8
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦) |
21 | | cfilfil 24336 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
22 | 10, 21 | mpancom 684 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐹 ∈ (Fil‘𝑋)) |
23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
24 | 23 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐹 ∈ (Fil‘𝑋)) |
25 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) |
26 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐹 ∈ (CauFil‘𝐷)) |
27 | | rphalfcl 12686 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ+) |
29 | | rphalfcl 12686 |
. . . . . . . . . . . . 13
⊢ ((𝑟 / 2) ∈ ℝ+
→ ((𝑟 / 2) / 2) ∈
ℝ+) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈
ℝ+) |
31 | | cfil3i 24338 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ ((𝑟 / 2) / 2) ∈ ℝ+) →
∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹) |
32 | 25, 26, 30, 31 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) →
∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹) |
33 | 23 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
34 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹) |
35 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐷 ∈ (∞Met‘𝑋)) |
36 | 17 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ 𝑋) |
37 | | rpxr 12668 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
38 | 37 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑟 ∈ ℝ*) |
39 | | blssm 23479 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋) |
40 | 35, 36, 38, 39 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋) |
41 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝐽 fClus 𝐹)) |
42 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈
ℝ+) |
43 | 42 | rpxrd 12702 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈
ℝ*) |
44 | 12 | blopn 23562 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑟 / 2) ∈ ℝ*) →
(𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽) |
45 | 35, 36, 43, 44 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽) |
46 | | blcntr 23474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑟 / 2) ∈ ℝ+) →
𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) |
47 | 35, 36, 42, 46 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) |
48 | | fclsopni 23074 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽 ∧ 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅) |
49 | 41, 45, 47, 34, 48 | syl13anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅) |
50 | | n0 4277 |
. . . . . . . . . . . . . 14
⊢ (((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) |
51 | 49, 50 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) |
52 | | elin 3899 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ↔ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) |
53 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) |
54 | | simplrl 773 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑦 ∈ 𝑋) |
55 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈
ℝ+) |
56 | 55 | rpred 12701 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ) |
57 | | simprr 769 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) |
58 | | blhalf 23466 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ ((𝑟 / 2) ∈ ℝ ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2))) |
59 | 53, 54, 56, 57, 58 | syl22anc 835 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2))) |
60 | | blssm 23479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑟 / 2) ∈ ℝ*) →
(𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋) |
61 | 35, 36, 43, 60 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋) |
62 | 61 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → 𝑧 ∈ 𝑋) |
63 | 62 | adantrr 713 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ 𝑋) |
64 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ+) |
65 | 64 | rpred 12701 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ) |
66 | | simprl 767 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) |
67 | 55 | rpxrd 12702 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈
ℝ*) |
68 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ 𝑋) |
69 | | blcom 23455 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧
(𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) |
70 | 53, 67, 68, 63, 69 | syl22anc 835 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) |
71 | 66, 70 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))) |
72 | | blhalf 23466 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)) |
73 | 53, 63, 65, 71, 72 | syl22anc 835 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)) |
74 | 59, 73 | sstrd 3927 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹 ∈
(CauFil‘𝐷) ∧
𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)) |
75 | 74 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) |
76 | 52, 75 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) |
77 | 76 | exlimdv 1937 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) |
78 | 51, 77 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)) |
79 | | filss 22912 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
80 | 33, 34, 40, 78, 79 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
81 | 32, 80 | rexlimddv 3219 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
82 | 81 | ad2ant2r 743 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
83 | | toponss 21984 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → 𝑦 ⊆ 𝑋) |
84 | 83 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ⊆ 𝑋) |
85 | 14, 84 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ⊆ 𝑋) |
86 | 85 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦 ⊆ 𝑋) |
87 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦) |
88 | | filss 22912 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦 ∈ 𝐹) |
89 | 24, 82, 86, 87, 88 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦 ∈ 𝐹) |
90 | 20, 89 | rexlimddv 3219 |
. . . . . . 7
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ∈ 𝐹) |
91 | 90 | expr 456 |
. . . . . 6
⊢ (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)) |
92 | 91 | ralrimiva 3107 |
. . . . 5
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)) |
93 | | flimopn 23034 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)))) |
94 | 14, 23, 93 | syl2anc 583 |
. . . . 5
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)))) |
95 | 17, 92, 94 | mpbir2and 709 |
. . . 4
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
96 | 95 | ex 412 |
. . 3
⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
97 | 96 | ssrdv 3923 |
. 2
⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹)) |
98 | | flimfcls 23085 |
. . 3
⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
99 | 98 | a1i 11 |
. 2
⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)) |
100 | 97, 99 | eqssd 3934 |
1
⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |