MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Visualization version   GIF version

Theorem cfilfcls 23289
Description: Similar to ultrafilters (uffclsflim 22052), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1 𝐽 = (MetOpen‘𝐷)
cfilfcls.2 𝑋 = dom dom 𝐷
Assertion
Ref Expression
cfilfcls (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))

Proof of Theorem cfilfcls
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2813 . . . . . . . 8 𝐽 = 𝐽
21fclselbas 22037 . . . . . . 7 (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 𝐽)
32adantl 469 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 𝐽)
4 df-cfil 23270 . . . . . . . . . . . . 13 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
54dmmptss 5852 . . . . . . . . . . . 12 dom CauFil ⊆ ran ∞Met
6 elfvdm 6443 . . . . . . . . . . . 12 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ dom CauFil)
75, 6sseldi 3803 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
8 xmetunirn 22359 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
97, 8sylib 209 . . . . . . . . . 10 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
10 cfilfcls.2 . . . . . . . . . . 11 𝑋 = dom dom 𝐷
1110fveq2i 6414 . . . . . . . . . 10 (∞Met‘𝑋) = (∞Met‘dom dom 𝐷)
129, 11syl6eleqr 2903 . . . . . . . . 9 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘𝑋))
1312adantr 468 . . . . . . . 8 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
14 cfilfcls.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1514mopntopon 22461 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1613, 15syl 17 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
17 toponuni 20936 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1816, 17syl 17 . . . . . 6 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
193, 18eleqtrrd 2895 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥𝑋)
2014mopni2 22515 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
21203expb 1142 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
2213, 21sylan 571 . . . . . . . 8 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
23 cfilfil 23282 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2412, 23mpancom 671 . . . . . . . . . . 11 (𝐹 ∈ (CauFil‘𝐷) → 𝐹 ∈ (Fil‘𝑋))
2524adantr 468 . . . . . . . . . 10 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
2625ad2antrr 708 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
2713adantr 468 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
28 simpll 774 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → 𝐹 ∈ (CauFil‘𝐷))
29 rphalfcl 12075 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
3029adantl 469 . . . . . . . . . . . . 13 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
31 rphalfcl 12075 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
3230, 31syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
33 cfil3i 23284 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3427, 28, 32, 33syl3anc 1483 . . . . . . . . . . 11 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3525ad2antrr 708 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
36 simprr 780 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)
3727adantr 468 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
3819ad2antrr 708 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥𝑋)
39 rpxr 12057 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4039ad2antlr 709 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑟 ∈ ℝ*)
41 blssm 22440 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4237, 38, 40, 41syl3anc 1483 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
43 simpllr 784 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝐽 fClus 𝐹))
4430adantr 468 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ+)
45 rpxr 12057 . . . . . . . . . . . . . . . . 17 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ*)
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑟 / 2) ∈ ℝ*)
4714blopn 22522 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
4837, 38, 46, 47syl3anc 1483 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
49 blcntr 22435 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
5037, 38, 44, 49syl3anc 1483 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
51 fclsopni 22036 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
5243, 48, 50, 36, 51syl13anc 1484 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅)
53 n0 4139 . . . . . . . . . . . . . 14 (((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5452, 53sylib 209 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
55 elin 4002 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) ↔ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))))
5637adantr 468 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
57 simplrl 786 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑦𝑋)
5844adantr 468 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ+)
5958rpred 12089 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ)
60 simprr 780 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))
61 blhalf 22427 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑟 / 2) ∈ ℝ ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
6256, 57, 59, 60, 61syl22anc 858 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑧(ball‘𝐷)(𝑟 / 2)))
63 blssm 22440 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6437, 38, 46, 63syl3anc 1483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑋)
6564sselda 3805 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → 𝑧𝑋)
6665adantrr 699 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧𝑋)
67 simpllr 784 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ+)
6867rpred 12089 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑟 ∈ ℝ)
69 simprl 778 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
7058, 45syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑟 / 2) ∈ ℝ*)
7138adantr 468 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥𝑋)
72 blcom 22416 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7356, 70, 71, 66, 72syl22anc 858 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2))))
7469, 73mpbid 223 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))
75 blhalf 22427 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ (𝑧(ball‘𝐷)(𝑟 / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7656, 66, 68, 74, 75syl22anc 858 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑧(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7762, 76sstrd 3815 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) ∧ (𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
7877ex 399 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → ((𝑧 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ∧ 𝑧 ∈ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
7955, 78syl5bi 233 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
8079exlimdv 2024 . . . . . . . . . . . . 13 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (∃𝑧 𝑧 ∈ ((𝑥(ball‘𝐷)(𝑟 / 2)) ∩ (𝑦(ball‘𝐷)((𝑟 / 2) / 2))) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
8154, 80mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
82 filss 21874 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8335, 36, 42, 81, 82syl13anc 1484 . . . . . . . . . . 11 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑦𝑋 ∧ (𝑦(ball‘𝐷)((𝑟 / 2) / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8434, 83rexlimddv 3230 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
8584ad2ant2r 744 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
86 toponss 20949 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
8786adantrr 699 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8816, 87sylan 571 . . . . . . . . . 10 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
8988adantr 468 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
90 simprr 780 . . . . . . . . 9 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
91 filss 21874 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
9226, 85, 89, 90, 91syl13anc 1484 . . . . . . . 8 ((((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐹)
9322, 92rexlimddv 3230 . . . . . . 7 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
9493expr 446 . . . . . 6 (((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
9594ralrimiva 3161 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
96 flimopn 21996 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9716, 25, 96syl2anc 575 . . . . 5 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9819, 95, 97mpbir2and 695 . . . 4 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
9998ex 399 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
10099ssrdv 3811 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹))
101 flimfcls 22047 . . 3 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
102101a1i 11 . 2 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹))
103100, 102eqssd 3822 1 (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2157  wne 2985  wral 3103  wrex 3104  {crab 3107  cin 3775  wss 3776  c0 4123   cuni 4637   × cxp 5316  dom cdm 5318  ran crn 5319  cima 5321  cfv 6104  (class class class)co 6877  cr 10223  0cc0 10224  *cxr 10361   / cdiv 10972  2c2 11359  +crp 12049  [,)cico 12398  ∞Metcxmt 19942  ballcbl 19944  MetOpencmopn 19947  TopOnctopon 20932  Filcfil 21866   fLim cflim 21955   fClus cfcls 21957  CauFilccfil 23267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-xneg 12165  df-xadd 12166  df-xmul 12167  df-ico 12402  df-topgen 16312  df-psmet 19949  df-xmet 19950  df-bl 19952  df-mopn 19953  df-fbas 19954  df-top 20916  df-topon 20933  df-bases 20968  df-cld 21041  df-ntr 21042  df-cls 21043  df-nei 21120  df-fil 21867  df-flim 21960  df-fcls 21962  df-cfil 23270
This theorem is referenced by:  relcmpcmet  23332
  Copyright terms: Public domain W3C validator