![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cidffn | Structured version Visualization version GIF version |
Description: The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
cidffn | ⊢ Id Fn Cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3475 | . . . . . 6 ⊢ 𝑏 ∈ V | |
2 | 1 | mptex 7235 | . . . . 5 ⊢ (𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓))) ∈ V |
3 | 2 | csbex 5311 | . . . 4 ⊢ ⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓))) ∈ V |
4 | 3 | csbex 5311 | . . 3 ⊢ ⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓))) ∈ V |
5 | 4 | csbex 5311 | . 2 ⊢ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓))) ∈ V |
6 | df-cid 17649 | . 2 ⊢ Id = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓)))) | |
7 | 5, 6 | fnmpti 6698 | 1 ⊢ Id Fn Cat |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∀wral 3058 ⦋csb 3892 ⟨cop 4635 ↦ cmpt 5231 Fn wfn 6543 ‘cfv 6548 ℩crio 7375 (class class class)co 7420 Basecbs 17180 Hom chom 17244 compcco 17245 Catccat 17644 Idccid 17645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-cid 17649 |
This theorem is referenced by: cidpropd 17690 |
Copyright terms: Public domain | W3C validator |