MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Structured version   Visualization version   GIF version

Theorem cidfval 17050
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfval (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   1 (𝑥,𝑦,𝑓,𝑔)

Proof of Theorem cidfval
Dummy variables 𝑏 𝑐 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2 1 = (Id‘𝐶)
2 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6689 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6674 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 cidfval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2791 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 fvexd 6689 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
8 simpl 486 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
98fveq2d 6678 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
10 cidfval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
119, 10eqtr4di 2791 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
12 fvexd 6689 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) ∈ V)
13 simpll 767 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1413fveq2d 6678 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
15 cidfval.o . . . . . . . 8 · = (comp‘𝐶)
1614, 15eqtr4di 2791 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
17 simpllr 776 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑏 = 𝐵)
18 simplr 769 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → = 𝐻)
1918oveqd 7187 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑥) = (𝑥𝐻𝑥))
2018oveqd 7187 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑦𝑥) = (𝑦𝐻𝑥))
21 simpr 488 . . . . . . . . . . . . . . 15 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑜 = · )
2221oveqd 7187 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑦, 𝑥𝑜𝑥) = (⟨𝑦, 𝑥· 𝑥))
2322oveqd 7187 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓))
2423eqeq1d 2740 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2520, 24raleqbidv 3304 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2618oveqd 7187 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑦) = (𝑥𝐻𝑦))
2721oveqd 7187 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑥, 𝑥𝑜𝑦) = (⟨𝑥, 𝑥· 𝑦))
2827oveqd 7187 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔))
2928eqeq1d 2740 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3026, 29raleqbidv 3304 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3125, 30anbi12d 634 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3217, 31raleqbidv 3304 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3319, 32riotaeqbidv 7130 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3417, 33mpteq12dv 5115 . . . . . . 7 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
3512, 16, 34csbied2 3827 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
367, 11, 35csbied2 3827 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
373, 6, 36csbied2 3827 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
38 df-cid 17043 . . . 4 Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
3937, 38, 5mptfvmpt 7001 . . 3 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
402, 39syl 17 . 2 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
411, 40syl5eq 2785 1 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  csb 3790  cop 4522  cmpt 5110  cfv 6339  crio 7126  (class class class)co 7170  Basecbs 16586  Hom chom 16679  compcco 16680  Catccat 17038  Idccid 17039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-cid 17043
This theorem is referenced by:  cidval  17051  cidfn  17053  catidd  17054  cidpropd  17084
  Copyright terms: Public domain W3C validator