MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Structured version   Visualization version   GIF version

Theorem cidfval 17613
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfval (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   1 (𝑥,𝑦,𝑓,𝑔)

Proof of Theorem cidfval
Dummy variables 𝑏 𝑐 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2 1 = (Id‘𝐶)
2 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6855 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6840 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 cidfval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2782 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 fvexd 6855 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
8 simpl 482 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
98fveq2d 6844 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
10 cidfval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
119, 10eqtr4di 2782 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
12 fvexd 6855 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) ∈ V)
13 simpll 766 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1413fveq2d 6844 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
15 cidfval.o . . . . . . . 8 · = (comp‘𝐶)
1614, 15eqtr4di 2782 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
17 simpllr 775 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑏 = 𝐵)
18 simplr 768 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → = 𝐻)
1918oveqd 7386 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑥) = (𝑥𝐻𝑥))
2018oveqd 7386 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑦𝑥) = (𝑦𝐻𝑥))
21 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑜 = · )
2221oveqd 7386 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑦, 𝑥𝑜𝑥) = (⟨𝑦, 𝑥· 𝑥))
2322oveqd 7386 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓))
2423eqeq1d 2731 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2520, 24raleqbidv 3316 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2618oveqd 7386 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑦) = (𝑥𝐻𝑦))
2721oveqd 7386 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑥, 𝑥𝑜𝑦) = (⟨𝑥, 𝑥· 𝑦))
2827oveqd 7386 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔))
2928eqeq1d 2731 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3026, 29raleqbidv 3316 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3125, 30anbi12d 632 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3217, 31raleqbidv 3316 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3319, 32riotaeqbidv 7329 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3417, 33mpteq12dv 5189 . . . . . . 7 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
3512, 16, 34csbied2 3896 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
367, 11, 35csbied2 3896 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
373, 6, 36csbied2 3896 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
38 df-cid 17606 . . . 4 Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
3937, 38, 5mptfvmpt 7184 . . 3 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
402, 39syl 17 . 2 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
411, 40eqtrid 2776 1 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  csb 3859  cop 4591  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-cid 17606
This theorem is referenced by:  cidval  17614  cidfn  17616  catidd  17617  cidpropd  17647
  Copyright terms: Public domain W3C validator