MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Structured version   Visualization version   GIF version

Theorem cidfval 17556
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b 𝐵 = (Base‘𝐶)
cidfval.h 𝐻 = (Hom ‘𝐶)
cidfval.o · = (comp‘𝐶)
cidfval.c (𝜑𝐶 ∈ Cat)
cidfval.i 1 = (Id‘𝐶)
Assertion
Ref Expression
cidfval (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   1 (𝑥,𝑦,𝑓,𝑔)

Proof of Theorem cidfval
Dummy variables 𝑏 𝑐 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2 1 = (Id‘𝐶)
2 cidfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6857 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6842 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 cidfval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2794 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 fvexd 6857 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
8 simpl 483 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
98fveq2d 6846 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
10 cidfval.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
119, 10eqtr4di 2794 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
12 fvexd 6857 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) ∈ V)
13 simpll 765 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1413fveq2d 6846 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
15 cidfval.o . . . . . . . 8 · = (comp‘𝐶)
1614, 15eqtr4di 2794 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
17 simpllr 774 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑏 = 𝐵)
18 simplr 767 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → = 𝐻)
1918oveqd 7374 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑥) = (𝑥𝐻𝑥))
2018oveqd 7374 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑦𝑥) = (𝑦𝐻𝑥))
21 simpr 485 . . . . . . . . . . . . . . 15 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → 𝑜 = · )
2221oveqd 7374 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑦, 𝑥𝑜𝑥) = (⟨𝑦, 𝑥· 𝑥))
2322oveqd 7374 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓))
2423eqeq1d 2738 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2520, 24raleqbidv 3319 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
2618oveqd 7374 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑦) = (𝑥𝐻𝑦))
2721oveqd 7374 . . . . . . . . . . . . . 14 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (⟨𝑥, 𝑥𝑜𝑦) = (⟨𝑥, 𝑥· 𝑦))
2827oveqd 7374 . . . . . . . . . . . . 13 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔))
2928eqeq1d 2738 . . . . . . . . . . . 12 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3026, 29raleqbidv 3319 . . . . . . . . . . 11 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))
3125, 30anbi12d 631 . . . . . . . . . 10 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → ((∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3217, 31raleqbidv 3319 . . . . . . . . 9 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ↔ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3319, 32riotaeqbidv 7316 . . . . . . . 8 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)) = (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓)))
3417, 33mpteq12dv 5196 . . . . . . 7 ((((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) ∧ 𝑜 = · ) → (𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
3512, 16, 34csbied2 3895 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
367, 11, 35csbied2 3895 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
373, 6, 36csbied2 3895 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
38 df-cid 17549 . . . 4 Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
3937, 38, 5mptfvmpt 7178 . . 3 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
402, 39syl 17 . 2 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
411, 40eqtrid 2788 1 (𝜑1 = (𝑥𝐵 ↦ (𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  csb 3855  cop 4592  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  Idccid 17545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-cid 17549
This theorem is referenced by:  cidval  17557  cidfn  17559  catidd  17560  cidpropd  17590
  Copyright terms: Public domain W3C validator