Step | Hyp | Ref
| Expression |
1 | | ccat 17605 |
. 2
class
Cat |
2 | | vg |
. . . . . . . . . . . . . . 15
setvar 𝑔 |
3 | 2 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑔 |
4 | | vf |
. . . . . . . . . . . . . . 15
setvar 𝑓 |
5 | 4 | cv 1541 |
. . . . . . . . . . . . . 14
class 𝑓 |
6 | | vy |
. . . . . . . . . . . . . . . . 17
setvar 𝑦 |
7 | 6 | cv 1541 |
. . . . . . . . . . . . . . . 16
class 𝑦 |
8 | | vx |
. . . . . . . . . . . . . . . . 17
setvar 𝑥 |
9 | 8 | cv 1541 |
. . . . . . . . . . . . . . . 16
class 𝑥 |
10 | 7, 9 | cop 4634 |
. . . . . . . . . . . . . . 15
class
⟨𝑦, 𝑥⟩ |
11 | | vo |
. . . . . . . . . . . . . . . 16
setvar 𝑜 |
12 | 11 | cv 1541 |
. . . . . . . . . . . . . . 15
class 𝑜 |
13 | 10, 9, 12 | co 7406 |
. . . . . . . . . . . . . 14
class
(⟨𝑦, 𝑥⟩𝑜𝑥) |
14 | 3, 5, 13 | co 7406 |
. . . . . . . . . . . . 13
class (𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) |
15 | 14, 5 | wceq 1542 |
. . . . . . . . . . . 12
wff (𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 |
16 | | vh |
. . . . . . . . . . . . . 14
setvar ℎ |
17 | 16 | cv 1541 |
. . . . . . . . . . . . 13
class ℎ |
18 | 7, 9, 17 | co 7406 |
. . . . . . . . . . . 12
class (𝑦ℎ𝑥) |
19 | 15, 4, 18 | wral 3062 |
. . . . . . . . . . 11
wff
∀𝑓 ∈
(𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 |
20 | 9, 9 | cop 4634 |
. . . . . . . . . . . . . . 15
class
⟨𝑥, 𝑥⟩ |
21 | 20, 7, 12 | co 7406 |
. . . . . . . . . . . . . 14
class
(⟨𝑥, 𝑥⟩𝑜𝑦) |
22 | 5, 3, 21 | co 7406 |
. . . . . . . . . . . . 13
class (𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) |
23 | 22, 5 | wceq 1542 |
. . . . . . . . . . . 12
wff (𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓 |
24 | 9, 7, 17 | co 7406 |
. . . . . . . . . . . 12
class (𝑥ℎ𝑦) |
25 | 23, 4, 24 | wral 3062 |
. . . . . . . . . . 11
wff
∀𝑓 ∈
(𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓 |
26 | 19, 25 | wa 397 |
. . . . . . . . . 10
wff
(∀𝑓 ∈
(𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) |
27 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
28 | 27 | cv 1541 |
. . . . . . . . . 10
class 𝑏 |
29 | 26, 6, 28 | wral 3062 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) |
30 | 9, 9, 17 | co 7406 |
. . . . . . . . 9
class (𝑥ℎ𝑥) |
31 | 29, 2, 30 | wrex 3071 |
. . . . . . . 8
wff
∃𝑔 ∈
(𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) |
32 | 9, 7 | cop 4634 |
. . . . . . . . . . . . . . . 16
class
⟨𝑥, 𝑦⟩ |
33 | | vz |
. . . . . . . . . . . . . . . . 17
setvar 𝑧 |
34 | 33 | cv 1541 |
. . . . . . . . . . . . . . . 16
class 𝑧 |
35 | 32, 34, 12 | co 7406 |
. . . . . . . . . . . . . . 15
class
(⟨𝑥, 𝑦⟩𝑜𝑧) |
36 | 3, 5, 35 | co 7406 |
. . . . . . . . . . . . . 14
class (𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) |
37 | 9, 34, 17 | co 7406 |
. . . . . . . . . . . . . 14
class (𝑥ℎ𝑧) |
38 | 36, 37 | wcel 2107 |
. . . . . . . . . . . . 13
wff (𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
39 | | vk |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑘 |
40 | 39 | cv 1541 |
. . . . . . . . . . . . . . . . . 18
class 𝑘 |
41 | 7, 34 | cop 4634 |
. . . . . . . . . . . . . . . . . . 19
class
⟨𝑦, 𝑧⟩ |
42 | | vw |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑤 |
43 | 42 | cv 1541 |
. . . . . . . . . . . . . . . . . . 19
class 𝑤 |
44 | 41, 43, 12 | co 7406 |
. . . . . . . . . . . . . . . . . 18
class
(⟨𝑦, 𝑧⟩𝑜𝑤) |
45 | 40, 3, 44 | co 7406 |
. . . . . . . . . . . . . . . . 17
class (𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔) |
46 | 32, 43, 12 | co 7406 |
. . . . . . . . . . . . . . . . 17
class
(⟨𝑥, 𝑦⟩𝑜𝑤) |
47 | 45, 5, 46 | co 7406 |
. . . . . . . . . . . . . . . 16
class ((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) |
48 | 9, 34 | cop 4634 |
. . . . . . . . . . . . . . . . . 18
class
⟨𝑥, 𝑧⟩ |
49 | 48, 43, 12 | co 7406 |
. . . . . . . . . . . . . . . . 17
class
(⟨𝑥, 𝑧⟩𝑜𝑤) |
50 | 40, 36, 49 | co 7406 |
. . . . . . . . . . . . . . . 16
class (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)) |
51 | 47, 50 | wceq 1542 |
. . . . . . . . . . . . . . 15
wff ((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)) |
52 | 34, 43, 17 | co 7406 |
. . . . . . . . . . . . . . 15
class (𝑧ℎ𝑤) |
53 | 51, 39, 52 | wral 3062 |
. . . . . . . . . . . . . 14
wff
∀𝑘 ∈
(𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)) |
54 | 53, 42, 28 | wral 3062 |
. . . . . . . . . . . . 13
wff
∀𝑤 ∈
𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)) |
55 | 38, 54 | wa 397 |
. . . . . . . . . . . 12
wff ((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))) |
56 | 7, 34, 17 | co 7406 |
. . . . . . . . . . . 12
class (𝑦ℎ𝑧) |
57 | 55, 2, 56 | wral 3062 |
. . . . . . . . . . 11
wff
∀𝑔 ∈
(𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))) |
58 | 57, 4, 24 | wral 3062 |
. . . . . . . . . 10
wff
∀𝑓 ∈
(𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))) |
59 | 58, 33, 28 | wral 3062 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))) |
60 | 59, 6, 28 | wral 3062 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))) |
61 | 31, 60 | wa 397 |
. . . . . . 7
wff
(∃𝑔 ∈
(𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)))) |
62 | 61, 8, 28 | wral 3062 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)))) |
63 | | vc |
. . . . . . . 8
setvar 𝑐 |
64 | 63 | cv 1541 |
. . . . . . 7
class 𝑐 |
65 | | cco 17206 |
. . . . . . 7
class
comp |
66 | 64, 65 | cfv 6541 |
. . . . . 6
class
(comp‘𝑐) |
67 | 62, 11, 66 | wsbc 3777 |
. . . . 5
wff
[(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)))) |
68 | | chom 17205 |
. . . . . 6
class
Hom |
69 | 64, 68 | cfv 6541 |
. . . . 5
class (Hom
‘𝑐) |
70 | 67, 16, 69 | wsbc 3777 |
. . . 4
wff
[(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)))) |
71 | | cbs 17141 |
. . . . 5
class
Base |
72 | 64, 71 | cfv 6541 |
. . . 4
class
(Base‘𝑐) |
73 | 70, 27, 72 | wsbc 3777 |
. . 3
wff
[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓)))) |
74 | 73, 63 | cab 2710 |
. 2
class {𝑐 ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))))} |
75 | 1, 74 | wceq 1542 |
1
wff Cat =
{𝑐 ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(⟨𝑦, 𝑥⟩𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(⟨𝑥, 𝑥⟩𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(⟨𝑦, 𝑧⟩𝑜𝑤)𝑔)(⟨𝑥, 𝑦⟩𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧⟩𝑜𝑤)(𝑔(⟨𝑥, 𝑦⟩𝑜𝑧)𝑓))))} |