MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cat Structured version   Visualization version   GIF version

Definition df-cat 17618
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in [Lang] p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets (cat1 18053). See setc2obas 18050 and setc2ohom 18051 for a counterexample. In contrast to definition 3.1 of [Adamek] p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ((Base‘𝑐)), the morphisms "hom" ((Hom ‘𝑐)) and the composition law "o" ((comp‘𝑐)). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in [Adamek] p. 21 and df-cid 17619. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-cat Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
Distinct variable group:   𝑏,𝑐,𝑓,𝑔,,𝑘,𝑜,𝑤,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-cat
StepHypRef Expression
1 ccat 17614 . 2 class Cat
2 vg . . . . . . . . . . . . . . 15 setvar 𝑔
32cv 1538 . . . . . . . . . . . . . 14 class 𝑔
4 vf . . . . . . . . . . . . . . 15 setvar 𝑓
54cv 1538 . . . . . . . . . . . . . 14 class 𝑓
6 vy . . . . . . . . . . . . . . . . 17 setvar 𝑦
76cv 1538 . . . . . . . . . . . . . . . 16 class 𝑦
8 vx . . . . . . . . . . . . . . . . 17 setvar 𝑥
98cv 1538 . . . . . . . . . . . . . . . 16 class 𝑥
107, 9cop 4635 . . . . . . . . . . . . . . 15 class 𝑦, 𝑥
11 vo . . . . . . . . . . . . . . . 16 setvar 𝑜
1211cv 1538 . . . . . . . . . . . . . . 15 class 𝑜
1310, 9, 12co 7413 . . . . . . . . . . . . . 14 class (⟨𝑦, 𝑥𝑜𝑥)
143, 5, 13co 7413 . . . . . . . . . . . . 13 class (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓)
1514, 5wceq 1539 . . . . . . . . . . . 12 wff (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
16 vh . . . . . . . . . . . . . 14 setvar
1716cv 1538 . . . . . . . . . . . . 13 class
187, 9, 17co 7413 . . . . . . . . . . . 12 class (𝑦𝑥)
1915, 4, 18wral 3059 . . . . . . . . . . 11 wff 𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
209, 9cop 4635 . . . . . . . . . . . . . . 15 class 𝑥, 𝑥
2120, 7, 12co 7413 . . . . . . . . . . . . . 14 class (⟨𝑥, 𝑥𝑜𝑦)
225, 3, 21co 7413 . . . . . . . . . . . . 13 class (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔)
2322, 5wceq 1539 . . . . . . . . . . . 12 wff (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
249, 7, 17co 7413 . . . . . . . . . . . 12 class (𝑥𝑦)
2523, 4, 24wral 3059 . . . . . . . . . . 11 wff 𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
2619, 25wa 394 . . . . . . . . . 10 wff (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
27 vb . . . . . . . . . . 11 setvar 𝑏
2827cv 1538 . . . . . . . . . 10 class 𝑏
2926, 6, 28wral 3059 . . . . . . . . 9 wff 𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
309, 9, 17co 7413 . . . . . . . . 9 class (𝑥𝑥)
3129, 2, 30wrex 3068 . . . . . . . 8 wff 𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
329, 7cop 4635 . . . . . . . . . . . . . . . 16 class 𝑥, 𝑦
33 vz . . . . . . . . . . . . . . . . 17 setvar 𝑧
3433cv 1538 . . . . . . . . . . . . . . . 16 class 𝑧
3532, 34, 12co 7413 . . . . . . . . . . . . . . 15 class (⟨𝑥, 𝑦𝑜𝑧)
363, 5, 35co 7413 . . . . . . . . . . . . . 14 class (𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)
379, 34, 17co 7413 . . . . . . . . . . . . . 14 class (𝑥𝑧)
3836, 37wcel 2104 . . . . . . . . . . . . 13 wff (𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧)
39 vk . . . . . . . . . . . . . . . . . . 19 setvar 𝑘
4039cv 1538 . . . . . . . . . . . . . . . . . 18 class 𝑘
417, 34cop 4635 . . . . . . . . . . . . . . . . . . 19 class 𝑦, 𝑧
42 vw . . . . . . . . . . . . . . . . . . . 20 setvar 𝑤
4342cv 1538 . . . . . . . . . . . . . . . . . . 19 class 𝑤
4441, 43, 12co 7413 . . . . . . . . . . . . . . . . . 18 class (⟨𝑦, 𝑧𝑜𝑤)
4540, 3, 44co 7413 . . . . . . . . . . . . . . . . 17 class (𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)
4632, 43, 12co 7413 . . . . . . . . . . . . . . . . 17 class (⟨𝑥, 𝑦𝑜𝑤)
4745, 5, 46co 7413 . . . . . . . . . . . . . . . 16 class ((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓)
489, 34cop 4635 . . . . . . . . . . . . . . . . . 18 class 𝑥, 𝑧
4948, 43, 12co 7413 . . . . . . . . . . . . . . . . 17 class (⟨𝑥, 𝑧𝑜𝑤)
5040, 36, 49co 7413 . . . . . . . . . . . . . . . 16 class (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5147, 50wceq 1539 . . . . . . . . . . . . . . 15 wff ((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5234, 43, 17co 7413 . . . . . . . . . . . . . . 15 class (𝑧𝑤)
5351, 39, 52wral 3059 . . . . . . . . . . . . . 14 wff 𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5453, 42, 28wral 3059 . . . . . . . . . . . . 13 wff 𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5538, 54wa 394 . . . . . . . . . . . 12 wff ((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
567, 34, 17co 7413 . . . . . . . . . . . 12 class (𝑦𝑧)
5755, 2, 56wral 3059 . . . . . . . . . . 11 wff 𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
5857, 4, 24wral 3059 . . . . . . . . . 10 wff 𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
5958, 33, 28wral 3059 . . . . . . . . 9 wff 𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
6059, 6, 28wral 3059 . . . . . . . 8 wff 𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
6131, 60wa 394 . . . . . . 7 wff (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
6261, 8, 28wral 3059 . . . . . 6 wff 𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
63 vc . . . . . . . 8 setvar 𝑐
6463cv 1538 . . . . . . 7 class 𝑐
65 cco 17215 . . . . . . 7 class comp
6664, 65cfv 6544 . . . . . 6 class (comp‘𝑐)
6762, 11, 66wsbc 3778 . . . . 5 wff [(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
68 chom 17214 . . . . . 6 class Hom
6964, 68cfv 6544 . . . . 5 class (Hom ‘𝑐)
7067, 16, 69wsbc 3778 . . . 4 wff [(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
71 cbs 17150 . . . . 5 class Base
7264, 71cfv 6544 . . . 4 class (Base‘𝑐)
7370, 27, 72wsbc 3778 . . 3 wff [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
7473, 63cab 2707 . 2 class {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
751, 74wceq 1539 1 wff Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
Colors of variables: wff setvar class
This definition is referenced by:  iscat  17622
  Copyright terms: Public domain W3C validator