MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cat Structured version   Visualization version   GIF version

Definition df-cat 17566
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in [Lang] p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets (cat1 17996). See setc2obas 17993 and setc2ohom 17994 for a counterexample. In contrast to definition 3.1 of [Adamek] p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ((Base‘𝑐)), the morphisms "hom" ((Hom ‘𝑐)) and the composition law "o" ((comp‘𝑐)). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in [Adamek] p. 21 and df-cid 17567. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-cat Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
Distinct variable group:   𝑏,𝑐,𝑓,𝑔,,𝑘,𝑜,𝑤,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-cat
StepHypRef Expression
1 ccat 17562 . 2 class Cat
2 vg . . . . . . . . . . . . . . 15 setvar 𝑔
32cv 1540 . . . . . . . . . . . . . 14 class 𝑔
4 vf . . . . . . . . . . . . . . 15 setvar 𝑓
54cv 1540 . . . . . . . . . . . . . 14 class 𝑓
6 vy . . . . . . . . . . . . . . . . 17 setvar 𝑦
76cv 1540 . . . . . . . . . . . . . . . 16 class 𝑦
8 vx . . . . . . . . . . . . . . . . 17 setvar 𝑥
98cv 1540 . . . . . . . . . . . . . . . 16 class 𝑥
107, 9cop 4580 . . . . . . . . . . . . . . 15 class 𝑦, 𝑥
11 vo . . . . . . . . . . . . . . . 16 setvar 𝑜
1211cv 1540 . . . . . . . . . . . . . . 15 class 𝑜
1310, 9, 12co 7341 . . . . . . . . . . . . . 14 class (⟨𝑦, 𝑥𝑜𝑥)
143, 5, 13co 7341 . . . . . . . . . . . . 13 class (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓)
1514, 5wceq 1541 . . . . . . . . . . . 12 wff (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
16 vh . . . . . . . . . . . . . 14 setvar
1716cv 1540 . . . . . . . . . . . . 13 class
187, 9, 17co 7341 . . . . . . . . . . . 12 class (𝑦𝑥)
1915, 4, 18wral 3045 . . . . . . . . . . 11 wff 𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
209, 9cop 4580 . . . . . . . . . . . . . . 15 class 𝑥, 𝑥
2120, 7, 12co 7341 . . . . . . . . . . . . . 14 class (⟨𝑥, 𝑥𝑜𝑦)
225, 3, 21co 7341 . . . . . . . . . . . . 13 class (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔)
2322, 5wceq 1541 . . . . . . . . . . . 12 wff (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
249, 7, 17co 7341 . . . . . . . . . . . 12 class (𝑥𝑦)
2523, 4, 24wral 3045 . . . . . . . . . . 11 wff 𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
2619, 25wa 395 . . . . . . . . . 10 wff (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
27 vb . . . . . . . . . . 11 setvar 𝑏
2827cv 1540 . . . . . . . . . 10 class 𝑏
2926, 6, 28wral 3045 . . . . . . . . 9 wff 𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
309, 9, 17co 7341 . . . . . . . . 9 class (𝑥𝑥)
3129, 2, 30wrex 3054 . . . . . . . 8 wff 𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
329, 7cop 4580 . . . . . . . . . . . . . . . 16 class 𝑥, 𝑦
33 vz . . . . . . . . . . . . . . . . 17 setvar 𝑧
3433cv 1540 . . . . . . . . . . . . . . . 16 class 𝑧
3532, 34, 12co 7341 . . . . . . . . . . . . . . 15 class (⟨𝑥, 𝑦𝑜𝑧)
363, 5, 35co 7341 . . . . . . . . . . . . . 14 class (𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)
379, 34, 17co 7341 . . . . . . . . . . . . . 14 class (𝑥𝑧)
3836, 37wcel 2110 . . . . . . . . . . . . 13 wff (𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧)
39 vk . . . . . . . . . . . . . . . . . . 19 setvar 𝑘
4039cv 1540 . . . . . . . . . . . . . . . . . 18 class 𝑘
417, 34cop 4580 . . . . . . . . . . . . . . . . . . 19 class 𝑦, 𝑧
42 vw . . . . . . . . . . . . . . . . . . . 20 setvar 𝑤
4342cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑤
4441, 43, 12co 7341 . . . . . . . . . . . . . . . . . 18 class (⟨𝑦, 𝑧𝑜𝑤)
4540, 3, 44co 7341 . . . . . . . . . . . . . . . . 17 class (𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)
4632, 43, 12co 7341 . . . . . . . . . . . . . . . . 17 class (⟨𝑥, 𝑦𝑜𝑤)
4745, 5, 46co 7341 . . . . . . . . . . . . . . . 16 class ((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓)
489, 34cop 4580 . . . . . . . . . . . . . . . . . 18 class 𝑥, 𝑧
4948, 43, 12co 7341 . . . . . . . . . . . . . . . . 17 class (⟨𝑥, 𝑧𝑜𝑤)
5040, 36, 49co 7341 . . . . . . . . . . . . . . . 16 class (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5147, 50wceq 1541 . . . . . . . . . . . . . . 15 wff ((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5234, 43, 17co 7341 . . . . . . . . . . . . . . 15 class (𝑧𝑤)
5351, 39, 52wral 3045 . . . . . . . . . . . . . 14 wff 𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5453, 42, 28wral 3045 . . . . . . . . . . . . 13 wff 𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))
5538, 54wa 395 . . . . . . . . . . . 12 wff ((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
567, 34, 17co 7341 . . . . . . . . . . . 12 class (𝑦𝑧)
5755, 2, 56wral 3045 . . . . . . . . . . 11 wff 𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
5857, 4, 24wral 3045 . . . . . . . . . 10 wff 𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
5958, 33, 28wral 3045 . . . . . . . . 9 wff 𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
6059, 6, 28wral 3045 . . . . . . . 8 wff 𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓)))
6131, 60wa 395 . . . . . . 7 wff (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
6261, 8, 28wral 3045 . . . . . 6 wff 𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
63 vc . . . . . . . 8 setvar 𝑐
6463cv 1540 . . . . . . 7 class 𝑐
65 cco 17165 . . . . . . 7 class comp
6664, 65cfv 6477 . . . . . 6 class (comp‘𝑐)
6762, 11, 66wsbc 3739 . . . . 5 wff [(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
68 chom 17164 . . . . . 6 class Hom
6964, 68cfv 6477 . . . . 5 class (Hom ‘𝑐)
7067, 16, 69wsbc 3739 . . . 4 wff [(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
71 cbs 17112 . . . . 5 class Base
7264, 71cfv 6477 . . . 4 class (Base‘𝑐)
7370, 27, 72wsbc 3739 . . 3 wff [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))
7473, 63cab 2708 . 2 class {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
751, 74wceq 1541 1 wff Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
Colors of variables: wff setvar class
This definition is referenced by:  iscat  17570
  Copyright terms: Public domain W3C validator