Step | Hyp | Ref
| Expression |
1 | | df-cn 23051 |
. . 3
β’ Cn =
(π β Top, π β Top β¦ {π β (βͺ π
βm βͺ π) β£ βπ¦ β π (β‘π β π¦) β π}) |
2 | 1 | a1i 11 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β Cn = (π β Top, π β Top β¦ {π β (βͺ π βm βͺ π)
β£ βπ¦ β
π (β‘π β π¦) β π})) |
3 | | simprr 770 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = πΎ) |
4 | 3 | unieqd 4922 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = βͺ
πΎ) |
5 | | toponuni 22736 |
. . . . . 6
β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) |
6 | 5 | ad2antlr 724 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = βͺ πΎ) |
7 | 4, 6 | eqtr4d 2774 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = π) |
8 | | simprl 768 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = π½) |
9 | 8 | unieqd 4922 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = βͺ
π½) |
10 | | toponuni 22736 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
11 | 10 | ad2antrr 723 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = βͺ π½) |
12 | 9, 11 | eqtr4d 2774 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = π) |
13 | 7, 12 | oveq12d 7430 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β (βͺ
π βm βͺ π) =
(π βm π)) |
14 | 8 | eleq2d 2818 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β ((β‘π β π¦) β π β (β‘π β π¦) β π½)) |
15 | 3, 14 | raleqbidv 3341 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β (βπ¦ β π (β‘π β π¦) β π β βπ¦ β πΎ (β‘π β π¦) β π½)) |
16 | 13, 15 | rabeqbidv 3448 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β {π β (βͺ π βm βͺ π)
β£ βπ¦ β
π (β‘π β π¦) β π} = {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) |
17 | | topontop 22735 |
. . 3
β’ (π½ β (TopOnβπ) β π½ β Top) |
18 | 17 | adantr 480 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β π½ β Top) |
19 | | topontop 22735 |
. . 3
β’ (πΎ β (TopOnβπ) β πΎ β Top) |
20 | 19 | adantl 481 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β πΎ β Top) |
21 | | ovex 7445 |
. . . 4
β’ (π βm π) β V |
22 | 21 | rabex 5332 |
. . 3
β’ {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V |
23 | 22 | a1i 11 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) |
24 | 2, 16, 18, 20, 23 | ovmpod 7563 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Cn πΎ) = {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) |