MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfval Structured version   Visualization version   GIF version

Theorem cnfval 23057
Description: The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Cn 𝐾) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽})
Distinct variable groups:   𝑦,𝑓,𝐾   𝑓,𝑋,𝑦   𝑓,π‘Œ,𝑦   𝑓,𝐽,𝑦

Proof of Theorem cnfval
Dummy variables 𝑗 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 23051 . . 3 Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗})
21a1i 11 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗}))
3 simprr 770 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ π‘˜ = 𝐾)
43unieqd 4922 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ βˆͺ π‘˜ = βˆͺ 𝐾)
5 toponuni 22736 . . . . . 6 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ = βˆͺ 𝐾)
65ad2antlr 724 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ π‘Œ = βˆͺ 𝐾)
74, 6eqtr4d 2774 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ βˆͺ π‘˜ = π‘Œ)
8 simprl 768 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ 𝑗 = 𝐽)
98unieqd 4922 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
10 toponuni 22736 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1110ad2antrr 723 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ 𝑋 = βˆͺ 𝐽)
129, 11eqtr4d 2774 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ βˆͺ 𝑗 = 𝑋)
137, 12oveq12d 7430 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) = (π‘Œ ↑m 𝑋))
148eleq2d 2818 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ ((◑𝑓 β€œ 𝑦) ∈ 𝑗 ↔ (◑𝑓 β€œ 𝑦) ∈ 𝐽))
153, 14raleqbidv 3341 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ (βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗 ↔ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽))
1613, 15rabeqbidv 3448 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝑗 = 𝐽 ∧ π‘˜ = 𝐾)) β†’ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗} = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽})
17 topontop 22735 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
1817adantr 480 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ 𝐽 ∈ Top)
19 topontop 22735 . . 3 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ 𝐾 ∈ Top)
2019adantl 481 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ 𝐾 ∈ Top)
21 ovex 7445 . . . 4 (π‘Œ ↑m 𝑋) ∈ V
2221rabex 5332 . . 3 {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽} ∈ V
2322a1i 11 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽} ∈ V)
242, 16, 18, 20, 23ovmpod 7563 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Cn 𝐾) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431  Vcvv 3473  βˆͺ cuni 4908  β—‘ccnv 5675   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8826  Topctop 22715  TopOnctopon 22732   Cn ccn 23048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-topon 22733  df-cn 23051
This theorem is referenced by:  iscn  23059  cnfex  44175
  Copyright terms: Public domain W3C validator