Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfval Structured version   Visualization version   GIF version

Theorem cnfval 21879
 Description: The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
Distinct variable groups:   𝑦,𝑓,𝐾   𝑓,𝑋,𝑦   𝑓,𝑌,𝑦   𝑓,𝐽,𝑦

Proof of Theorem cnfval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 21873 . . 3 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
21a1i 11 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗}))
3 simprr 772 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
43unieqd 4818 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
5 toponuni 21560 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 726 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑌 = 𝐾)
74, 6eqtr4d 2836 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝑌)
8 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
98unieqd 4818 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
10 toponuni 21560 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad2antrr 725 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
129, 11eqtr4d 2836 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
137, 12oveq12d 7163 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ( 𝑘m 𝑗) = (𝑌m 𝑋))
148eleq2d 2875 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ((𝑓𝑦) ∈ 𝑗 ↔ (𝑓𝑦) ∈ 𝐽))
153, 14raleqbidv 3355 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗 ↔ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽))
1613, 15rabeqbidv 3434 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗} = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
17 topontop 21559 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1817adantr 484 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top)
19 topontop 21559 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2019adantl 485 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top)
21 ovex 7178 . . . 4 (𝑌m 𝑋) ∈ V
2221rabex 5203 . . 3 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V
2322a1i 11 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
242, 16, 18, 20, 23ovmpod 7292 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3442  ∪ cuni 4804  ◡ccnv 5522   “ cima 5526  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147   ↑m cmap 8407  Topctop 21539  TopOnctopon 21556   Cn ccn 21870 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6291  df-fun 6334  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-topon 21557  df-cn 21873 This theorem is referenced by:  iscn  21881  cnfex  41828
 Copyright terms: Public domain W3C validator