Step | Hyp | Ref
| Expression |
1 | | df-cn 22286 |
. . 3
⊢ Cn =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘
↑m ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗})) |
3 | | simprr 769 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
4 | 3 | unieqd 4850 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = ∪
𝐾) |
5 | | toponuni 21971 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
6 | 5 | ad2antlr 723 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑌 = ∪ 𝐾) |
7 | 4, 6 | eqtr4d 2781 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = 𝑌) |
8 | | simprl 767 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
9 | 8 | unieqd 4850 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
10 | | toponuni 21971 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 10 | ad2antrr 722 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
12 | 9, 11 | eqtr4d 2781 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
13 | 7, 12 | oveq12d 7273 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∪
𝑘 ↑m ∪ 𝑗) =
(𝑌 ↑m 𝑋)) |
14 | 8 | eleq2d 2824 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ((◡𝑓 “ 𝑦) ∈ 𝑗 ↔ (◡𝑓 “ 𝑦) ∈ 𝐽)) |
15 | 3, 14 | raleqbidv 3327 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗 ↔ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽)) |
16 | 13, 15 | rabeqbidv 3410 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗} = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
17 | | topontop 21970 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
18 | 17 | adantr 480 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top) |
19 | | topontop 21970 |
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
20 | 19 | adantl 481 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top) |
21 | | ovex 7288 |
. . . 4
⊢ (𝑌 ↑m 𝑋) ∈ V |
22 | 21 | rabex 5251 |
. . 3
⊢ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V |
23 | 22 | a1i 11 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
24 | 2, 16, 18, 20, 23 | ovmpod 7403 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |