MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn2 Structured version   Visualization version   GIF version

Theorem iscn2 22964
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1 𝑋 = βˆͺ 𝐽
iscn.2 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
iscn2 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,π‘Œ

Proof of Theorem iscn2
Dummy variables 𝑓 𝑗 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 22953 . . 3 Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗})
21elmpocl 7652 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
3 iscn.1 . . . 4 𝑋 = βˆͺ 𝐽
43toptopon 22641 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
5 iscn.2 . . . 4 π‘Œ = βˆͺ 𝐾
65toptopon 22641 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
7 iscn 22961 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
84, 6, 7syl2anb 596 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
92, 8biadanii 818 1 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  βˆͺ cuni 4909  β—‘ccnv 5676   β€œ cima 5680  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413   ↑m cmap 8824  Topctop 22617  TopOnctopon 22634   Cn ccn 22950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-top 22618  df-topon 22635  df-cn 22953
This theorem is referenced by:  cntop1  22966  cntop2  22967  cnf  22972  cnima  22991  cnco  22992  ptpjcn  23337
  Copyright terms: Public domain W3C validator