![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscn2 | Structured version Visualization version GIF version |
Description: The predicate "the class πΉ is a continuous function from topology π½ to topology πΎ". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn.1 | β’ π = βͺ π½ |
iscn.2 | β’ π = βͺ πΎ |
Ref | Expression |
---|---|
iscn2 | β’ (πΉ β (π½ Cn πΎ) β ((π½ β Top β§ πΎ β Top) β§ (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cn 22953 | . . 3 β’ Cn = (π β Top, π β Top β¦ {π β (βͺ π βm βͺ π) β£ βπ¦ β π (β‘π β π¦) β π}) | |
2 | 1 | elmpocl 7652 | . 2 β’ (πΉ β (π½ Cn πΎ) β (π½ β Top β§ πΎ β Top)) |
3 | iscn.1 | . . . 4 β’ π = βͺ π½ | |
4 | 3 | toptopon 22641 | . . 3 β’ (π½ β Top β π½ β (TopOnβπ)) |
5 | iscn.2 | . . . 4 β’ π = βͺ πΎ | |
6 | 5 | toptopon 22641 | . . 3 β’ (πΎ β Top β πΎ β (TopOnβπ)) |
7 | iscn 22961 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) | |
8 | 4, 6, 7 | syl2anb 596 | . 2 β’ ((π½ β Top β§ πΎ β Top) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
9 | 2, 8 | biadanii 818 | 1 β’ (πΉ β (π½ Cn πΎ) β ((π½ β Top β§ πΎ β Top) β§ (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 βͺ cuni 4909 β‘ccnv 5676 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7413 βm cmap 8824 Topctop 22617 TopOnctopon 22634 Cn ccn 22950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-top 22618 df-topon 22635 df-cn 22953 |
This theorem is referenced by: cntop1 22966 cntop2 22967 cnf 22972 cnima 22991 cnco 22992 ptpjcn 23337 |
Copyright terms: Public domain | W3C validator |