Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscn | Structured version Visualization version GIF version |
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfval 22384 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽})) |
3 | cnveq 5782 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
4 | 3 | imaeq1d 5968 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑦) = (◡𝐹 “ 𝑦)) |
5 | 4 | eleq1d 2823 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
6 | 5 | ralbidv 3112 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
7 | 6 | elrab 3624 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
8 | toponmax 22075 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | |
9 | toponmax 22075 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
10 | elmapg 8628 | . . . . 5 ⊢ ((𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
11 | 8, 9, 10 | syl2anr 597 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
12 | 11 | anbi1d 630 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
13 | 7, 12 | bitrid 282 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
14 | 2, 13 | bitrd 278 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-top 22043 df-topon 22060 df-cn 22378 |
This theorem is referenced by: iscn2 22389 cnf2 22400 tgcn 22403 ssidcn 22406 iscncl 22420 cnntr 22426 cnss1 22427 cnss2 22428 cncnp 22431 cnrest 22436 cnrest2 22437 cndis 22442 cnindis 22443 kgencn 22707 kgencn3 22709 tx1cn 22760 tx2cn 22761 txdis1cn 22786 qtopid 22856 qtopcn 22865 qtopf1 22967 qustgplem 23272 ucncn 23437 cvmlift2lem9a 33265 rfcnpre1 42562 0cnf 43418 |
Copyright terms: Public domain | W3C validator |