![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscn | Structured version Visualization version GIF version |
Description: The predicate "the class πΉ is a continuous function from topology π½ to topology πΎ". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfval 22959 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Cn πΎ) = {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) | |
2 | 1 | eleq2d 2817 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β πΉ β {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½})) |
3 | cnveq 5874 | . . . . . . 7 β’ (π = πΉ β β‘π = β‘πΉ) | |
4 | 3 | imaeq1d 6059 | . . . . . 6 β’ (π = πΉ β (β‘π β π¦) = (β‘πΉ β π¦)) |
5 | 4 | eleq1d 2816 | . . . . 5 β’ (π = πΉ β ((β‘π β π¦) β π½ β (β‘πΉ β π¦) β π½)) |
6 | 5 | ralbidv 3175 | . . . 4 β’ (π = πΉ β (βπ¦ β πΎ (β‘π β π¦) β π½ β βπ¦ β πΎ (β‘πΉ β π¦) β π½)) |
7 | 6 | elrab 3684 | . . 3 β’ (πΉ β {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β (πΉ β (π βm π) β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½)) |
8 | toponmax 22650 | . . . . 5 β’ (πΎ β (TopOnβπ) β π β πΎ) | |
9 | toponmax 22650 | . . . . 5 β’ (π½ β (TopOnβπ) β π β π½) | |
10 | elmapg 8837 | . . . . 5 β’ ((π β πΎ β§ π β π½) β (πΉ β (π βm π) β πΉ:πβΆπ)) | |
11 | 8, 9, 10 | syl2anr 595 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π βm π) β πΉ:πβΆπ)) |
12 | 11 | anbi1d 628 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((πΉ β (π βm π) β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
13 | 7, 12 | bitrid 282 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β {π β (π βm π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
14 | 2, 13 | bitrd 278 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β‘ccnv 5676 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7413 βm cmap 8824 TopOnctopon 22634 Cn ccn 22950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-top 22618 df-topon 22635 df-cn 22953 |
This theorem is referenced by: iscn2 22964 cnf2 22975 tgcn 22978 ssidcn 22981 iscncl 22995 cnntr 23001 cnss1 23002 cnss2 23003 cncnp 23006 cnrest 23011 cnrest2 23012 cndis 23017 cnindis 23018 kgencn 23282 kgencn3 23284 tx1cn 23335 tx2cn 23336 txdis1cn 23361 qtopid 23431 qtopcn 23440 qtopf1 23542 qustgplem 23847 ucncn 24012 cvmlift2lem9a 34590 rfcnpre1 44007 0cnf 44893 |
Copyright terms: Public domain | W3C validator |