|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iscn | Structured version Visualization version GIF version | ||
| Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| iscn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnfval 23242 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
| 2 | 1 | eleq2d 2826 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽})) | 
| 3 | cnveq 5883 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 4 | 3 | imaeq1d 6076 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑦) = (◡𝐹 “ 𝑦)) | 
| 5 | 4 | eleq1d 2825 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) | 
| 6 | 5 | ralbidv 3177 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) | 
| 7 | 6 | elrab 3691 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) | 
| 8 | toponmax 22933 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | |
| 9 | toponmax 22933 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 10 | elmapg 8880 | . . . . 5 ⊢ ((𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
| 11 | 8, 9, 10 | syl2anr 597 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | 
| 12 | 11 | anbi1d 631 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| 13 | 7, 12 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| 14 | 2, 13 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ◡ccnv 5683 “ cima 5687 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 TopOnctopon 22917 Cn ccn 23233 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-top 22901 df-topon 22918 df-cn 23236 | 
| This theorem is referenced by: iscn2 23247 cnf2 23258 tgcn 23261 ssidcn 23264 iscncl 23278 cnntr 23284 cnss1 23285 cnss2 23286 cncnp 23289 cnrest 23294 cnrest2 23295 cndis 23300 cnindis 23301 kgencn 23565 kgencn3 23567 tx1cn 23618 tx2cn 23619 txdis1cn 23644 qtopid 23714 qtopcn 23723 qtopf1 23825 qustgplem 24130 ucncn 24295 cvmlift2lem9a 35309 rfcnpre1 45029 0cnf 45897 | 
| Copyright terms: Public domain | W3C validator |