MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn Structured version   Visualization version   GIF version

Theorem iscn 23264
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,𝑌

Proof of Theorem iscn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnfval 23262 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
21eleq2d 2830 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽}))
3 cnveq 5898 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 6088 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq1d 2829 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑦) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
65ralbidv 3184 . . . 4 (𝑓 = 𝐹 → (∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
76elrab 3708 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
8 toponmax 22953 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
9 toponmax 22953 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
10 elmapg 8897 . . . . 5 ((𝑌𝐾𝑋𝐽) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
118, 9, 10syl2anr 596 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1211anbi1d 630 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
137, 12bitrid 283 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
142, 13bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  TopOnctopon 22937   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256
This theorem is referenced by:  iscn2  23267  cnf2  23278  tgcn  23281  ssidcn  23284  iscncl  23298  cnntr  23304  cnss1  23305  cnss2  23306  cncnp  23309  cnrest  23314  cnrest2  23315  cndis  23320  cnindis  23321  kgencn  23585  kgencn3  23587  tx1cn  23638  tx2cn  23639  txdis1cn  23664  qtopid  23734  qtopcn  23743  qtopf1  23845  qustgplem  24150  ucncn  24315  cvmlift2lem9a  35271  rfcnpre1  44919  0cnf  45798
  Copyright terms: Public domain W3C validator