Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscn | Structured version Visualization version GIF version |
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfval 22292 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽})) |
3 | cnveq 5771 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
4 | 3 | imaeq1d 5957 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑦) = (◡𝐹 “ 𝑦)) |
5 | 4 | eleq1d 2823 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
6 | 5 | ralbidv 3120 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
7 | 6 | elrab 3617 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
8 | toponmax 21983 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | |
9 | toponmax 21983 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
10 | elmapg 8586 | . . . . 5 ⊢ ((𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
11 | 8, 9, 10 | syl2anr 596 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
12 | 11 | anbi1d 629 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
13 | 7, 12 | syl5bb 282 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
14 | 2, 13 | bitrd 278 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: iscn2 22297 cnf2 22308 tgcn 22311 ssidcn 22314 iscncl 22328 cnntr 22334 cnss1 22335 cnss2 22336 cncnp 22339 cnrest 22344 cnrest2 22345 cndis 22350 cnindis 22351 kgencn 22615 kgencn3 22617 tx1cn 22668 tx2cn 22669 txdis1cn 22694 qtopid 22764 qtopcn 22773 qtopf1 22875 qustgplem 23180 ucncn 23345 cvmlift2lem9a 33165 rfcnpre1 42451 0cnf 43308 |
Copyright terms: Public domain | W3C validator |