MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn Structured version   Visualization version   GIF version

Theorem iscn 22961
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,π‘Œ

Proof of Theorem iscn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnfval 22959 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Cn 𝐾) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽})
21eleq2d 2817 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽}))
3 cnveq 5874 . . . . . . 7 (𝑓 = 𝐹 β†’ ◑𝑓 = ◑𝐹)
43imaeq1d 6059 . . . . . 6 (𝑓 = 𝐹 β†’ (◑𝑓 β€œ 𝑦) = (◑𝐹 β€œ 𝑦))
54eleq1d 2816 . . . . 5 (𝑓 = 𝐹 β†’ ((◑𝑓 β€œ 𝑦) ∈ 𝐽 ↔ (◑𝐹 β€œ 𝑦) ∈ 𝐽))
65ralbidv 3175 . . . 4 (𝑓 = 𝐹 β†’ (βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽 ↔ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽))
76elrab 3684 . . 3 (𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (π‘Œ ↑m 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽))
8 toponmax 22650 . . . . 5 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
9 toponmax 22650 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
10 elmapg 8837 . . . . 5 ((π‘Œ ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) β†’ (𝐹 ∈ (π‘Œ ↑m 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
118, 9, 10syl2anr 595 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (π‘Œ ↑m 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
1211anbi1d 628 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹 ∈ (π‘Œ ↑m 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
137, 12bitrid 282 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽} ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
142, 13bitrd 278 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  β—‘ccnv 5676   β€œ cima 5680  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413   ↑m cmap 8824  TopOnctopon 22634   Cn ccn 22950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-top 22618  df-topon 22635  df-cn 22953
This theorem is referenced by:  iscn2  22964  cnf2  22975  tgcn  22978  ssidcn  22981  iscncl  22995  cnntr  23001  cnss1  23002  cnss2  23003  cncnp  23006  cnrest  23011  cnrest2  23012  cndis  23017  cnindis  23018  kgencn  23282  kgencn3  23284  tx1cn  23335  tx2cn  23336  txdis1cn  23361  qtopid  23431  qtopcn  23440  qtopf1  23542  qustgplem  23847  ucncn  24012  cvmlift2lem9a  34590  rfcnpre1  44007  0cnf  44893
  Copyright terms: Public domain W3C validator