MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm Structured version   Visualization version   GIF version

Theorem iscnrm 23238
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
iscnrm (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4867 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . . 5 𝑋 = 𝐽
31, 2eqtr4di 2784 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
43pweqd 4564 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
5 oveq1 7353 . . . 4 (𝑗 = 𝐽 → (𝑗t 𝑥) = (𝐽t 𝑥))
65eleq1d 2816 . . 3 (𝑗 = 𝐽 → ((𝑗t 𝑥) ∈ Nrm ↔ (𝐽t 𝑥) ∈ Nrm))
74, 6raleqbidv 3312 . 2 (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
8 df-cnrm 23233 . 2 CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm}
97, 8elrab2 3645 1 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  𝒫 cpw 4547   cuni 4856  (class class class)co 7346  t crest 17324  Topctop 22808  Nrmcnrm 23225  CNrmccnrm 23226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-cnrm 23233
This theorem is referenced by:  cnrmtop  23252  iscnrm2  23253  cnrmi  23275  iscnrm3  49062
  Copyright terms: Public domain W3C validator