| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscnrm | Structured version Visualization version GIF version | ||
| Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iscnrm | ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4878 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 2 | ist0.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | eqtr4di 2782 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 4 | 3 | pweqd 4576 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
| 5 | oveq1 7376 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑥) = (𝐽 ↾t 𝑥)) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t 𝑥) ∈ Nrm)) |
| 7 | 4, 6 | raleqbidv 3316 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
| 8 | df-cnrm 23238 | . 2 ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} | |
| 9 | 7, 8 | elrab2 3659 | 1 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4559 ∪ cuni 4867 (class class class)co 7369 ↾t crest 17359 Topctop 22813 Nrmcnrm 23230 CNrmccnrm 23231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-cnrm 23238 |
| This theorem is referenced by: cnrmtop 23257 iscnrm2 23258 cnrmi 23280 iscnrm3 48933 |
| Copyright terms: Public domain | W3C validator |