![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscnrm | Structured version Visualization version GIF version |
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscnrm | ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
2 | ist0.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | eqtr4di 2798 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
4 | 3 | pweqd 4639 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
5 | oveq1 7455 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑥) = (𝐽 ↾t 𝑥)) | |
6 | 5 | eleq1d 2829 | . . 3 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t 𝑥) ∈ Nrm)) |
7 | 4, 6 | raleqbidv 3354 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
8 | df-cnrm 23347 | . 2 ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} | |
9 | 7, 8 | elrab2 3711 | 1 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 𝒫 cpw 4622 ∪ cuni 4931 (class class class)co 7448 ↾t crest 17480 Topctop 22920 Nrmcnrm 23339 CNrmccnrm 23340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cnrm 23347 |
This theorem is referenced by: cnrmtop 23366 iscnrm2 23367 cnrmi 23389 iscnrm3 48632 |
Copyright terms: Public domain | W3C validator |