![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscnrm | Structured version Visualization version GIF version |
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscnrm | ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4679 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
2 | ist0.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6eqr 2831 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
4 | 3 | pweqd 4383 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
5 | oveq1 6929 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑥) = (𝐽 ↾t 𝑥)) | |
6 | 5 | eleq1d 2843 | . . 3 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t 𝑥) ∈ Nrm)) |
7 | 4, 6 | raleqbidv 3325 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
8 | df-cnrm 21530 | . 2 ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} | |
9 | 7, 8 | elrab2 3575 | 1 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 𝒫 cpw 4378 ∪ cuni 4671 (class class class)co 6922 ↾t crest 16467 Topctop 21105 Nrmcnrm 21522 CNrmccnrm 21523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 df-cnrm 21530 |
This theorem is referenced by: cnrmtop 21549 iscnrm2 21550 cnrmi 21572 |
Copyright terms: Public domain | W3C validator |