Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cnvrefrel | Structured version Visualization version GIF version |
Description: Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 36647. Alternate definitions are dfcnvrefrel2 36646 and dfcnvrefrel3 36647. (Contributed by Peter Mazsa, 16-Jul-2021.) |
Ref | Expression |
---|---|
df-cnvrefrel | ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | 1 | wcnvrefrel 36342 | . 2 wff CnvRefRel 𝑅 |
3 | 1 | cdm 5589 | . . . . . 6 class dom 𝑅 |
4 | 1 | crn 5590 | . . . . . 6 class ran 𝑅 |
5 | 3, 4 | cxp 5587 | . . . . 5 class (dom 𝑅 × ran 𝑅) |
6 | 1, 5 | cin 3886 | . . . 4 class (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
7 | cid 5488 | . . . . 5 class I | |
8 | 7, 5 | cin 3886 | . . . 4 class ( I ∩ (dom 𝑅 × ran 𝑅)) |
9 | 6, 8 | wss 3887 | . . 3 wff (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) |
10 | 1 | wrel 5594 | . . 3 wff Rel 𝑅 |
11 | 9, 10 | wa 396 | . 2 wff ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) |
12 | 2, 11 | wb 205 | 1 wff ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfcnvrefrel2 36646 dfcnvrefrel3 36647 |
Copyright terms: Public domain | W3C validator |