Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrel Structured version   Visualization version   GIF version

Definition df-cnvrefrel 38483
Description: Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 38487. Alternate definitions are dfcnvrefrel2 38486 and dfcnvrefrel3 38487. (Contributed by Peter Mazsa, 16-Jul-2021.)
Assertion
Ref Expression
df-cnvrefrel ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))

Detailed syntax breakdown of Definition df-cnvrefrel
StepHypRef Expression
1 cR . . 3 class 𝑅
21wcnvrefrel 38144 . 2 wff CnvRefRel 𝑅
31cdm 5700 . . . . . 6 class dom 𝑅
41crn 5701 . . . . . 6 class ran 𝑅
53, 4cxp 5698 . . . . 5 class (dom 𝑅 × ran 𝑅)
61, 5cin 3975 . . . 4 class (𝑅 ∩ (dom 𝑅 × ran 𝑅))
7 cid 5592 . . . . 5 class I
87, 5cin 3975 . . . 4 class ( I ∩ (dom 𝑅 × ran 𝑅))
96, 8wss 3976 . . 3 wff (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅))
101wrel 5705 . . 3 wff Rel 𝑅
119, 10wa 395 . 2 wff ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)
122, 11wb 206 1 wff ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrel2  38486  dfcnvrefrel3  38487  dfcnvrefrel4  38488
  Copyright terms: Public domain W3C validator