Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel4 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel4 37397
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.)
Assertion
Ref Expression
dfcnvrefrel4 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))

Proof of Theorem dfcnvrefrel4
StepHypRef Expression
1 df-cnvrefrel 37392 . 2 ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 cnvref4 37214 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ I ))
31, 2bianim 37091 1 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  cin 3947  wss 3948   I cid 5573   × cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681   CnvRefRel wcnvrefrel 37047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-cnvrefrel 37392
This theorem is referenced by:  dfcnvrefrel5  37398  dfantisymrel4  37626
  Copyright terms: Public domain W3C validator