| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| Ref | Expression |
|---|---|
| dfcnvrefrel4 | ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrel 38466 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
| 2 | cnvref4 38289 | . 2 ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ I )) | |
| 3 | 1, 2 | bianim 576 | 1 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3923 ⊆ wss 3924 I cid 5544 × cxp 5649 dom cdm 5651 ran crn 5652 Rel wrel 5656 CnvRefRel wcnvrefrel 38129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-xp 5657 df-rel 5658 df-cnv 5659 df-dm 5661 df-rn 5662 df-res 5663 df-cnvrefrel 38466 |
| This theorem is referenced by: dfcnvrefrel5 38472 dfantisymrel4 38700 |
| Copyright terms: Public domain | W3C validator |