|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) | 
| Ref | Expression | 
|---|---|
| dfcnvrefrel4 | ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-cnvrefrel 38529 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
| 2 | cnvref4 38352 | . 2 ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ I )) | |
| 3 | 1, 2 | bianim 576 | 1 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3949 ⊆ wss 3950 I cid 5576 × cxp 5682 dom cdm 5684 ran crn 5685 Rel wrel 5689 CnvRefRel wcnvrefrel 38192 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-cnvrefrel 38529 | 
| This theorem is referenced by: dfcnvrefrel5 38535 dfantisymrel4 38763 | 
| Copyright terms: Public domain | W3C validator |