Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel4 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel4 37308
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.)
Assertion
Ref Expression
dfcnvrefrel4 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))

Proof of Theorem dfcnvrefrel4
StepHypRef Expression
1 df-cnvrefrel 37303 . 2 ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 cnvref4 37125 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ I ))
31, 2bianim 37002 1 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  cin 3945  wss 3946   I cid 5569   × cxp 5670  dom cdm 5672  ran crn 5673  Rel wrel 5677   CnvRefRel wcnvrefrel 36958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-cnvrefrel 37303
This theorem is referenced by:  dfcnvrefrel5  37309  dfantisymrel4  37537
  Copyright terms: Public domain W3C validator