| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
| Ref | Expression |
|---|---|
| dfcnvrefrel4 | ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrel 38550 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
| 2 | cnvref4 38373 | . 2 ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ I )) | |
| 3 | 1, 2 | bianim 576 | 1 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3930 ⊆ wss 3931 I cid 5552 × cxp 5657 dom cdm 5659 ran crn 5660 Rel wrel 5664 CnvRefRel wcnvrefrel 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-cnvrefrel 38550 |
| This theorem is referenced by: dfcnvrefrel5 38556 dfantisymrel4 38784 |
| Copyright terms: Public domain | W3C validator |