Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel2 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel2 35210
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.)
Assertion
Ref Expression
dfcnvrefrel2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))

Proof of Theorem dfcnvrefrel2
StepHypRef Expression
1 df-cnvrefrel 35207 . 2 ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 dfrel6 35047 . . . . 5 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32biimpi 208 . . . 4 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
43sseq1d 3889 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅))))
54pm5.32ri 568 . 2 (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
61, 5bitri 267 1 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  cin 3829  wss 3830   I cid 5311   × cxp 5405  dom cdm 5407  ran crn 5408  Rel wrel 5412   CnvRefRel wcnvrefrel 34903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-xp 5413  df-rel 5414  df-cnv 5415  df-dm 5417  df-rn 5418  df-res 5419  df-cnvrefrel 35207
This theorem is referenced by:  elcnvrefrelsrel  35214  cnvrefrelcoss2  35215
  Copyright terms: Public domain W3C validator