Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.) |
Ref | Expression |
---|---|
dfcnvrefrel2 | ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrel 36787 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
2 | dfrel6 36606 | . . . . 5 ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
4 | 3 | sseq1d 3962 | . . 3 ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)))) |
5 | 4 | pm5.32ri 576 | . 2 ⊢ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∩ cin 3896 ⊆ wss 3897 I cid 5511 × cxp 5612 dom cdm 5614 ran crn 5615 Rel wrel 5619 CnvRefRel wcnvrefrel 36440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-cnvrefrel 36787 |
This theorem is referenced by: elcnvrefrelsrel 36796 cnvrefrelcoss2 36797 |
Copyright terms: Public domain | W3C validator |