Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel3 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel3 38622
Description: Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 38607. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
dfcnvrefrel3 ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfcnvrefrel3
StepHypRef Expression
1 df-cnvrefrel 38618 . 2 ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 inxpssidinxp 38353 . . 3 ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦))
32anbi1i 624 . 2 (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
41, 3bitri 275 1 ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3047  cin 3896  wss 3897   class class class wbr 5089   I cid 5508   × cxp 5612  dom cdm 5614  ran crn 5615  Rel wrel 5619   CnvRefRel wcnvrefrel 38230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnvrefrel 38618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator