Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrel3 Structured version   Visualization version   GIF version

Theorem dfcnvrefrel3 38487
Description: Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 38472. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
dfcnvrefrel3 ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem dfcnvrefrel3
StepHypRef Expression
1 df-cnvrefrel 38483 . 2 ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 inxpssidinxp 38272 . . 3 ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦))
32anbi1i 623 . 2 (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
41, 3bitri 275 1 ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3067  cin 3975  wss 3976   class class class wbr 5166   I cid 5592   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705   CnvRefRel wcnvrefrel 38144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnvrefrel 38483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator