| Metamath
Proof Explorer Theorem List (p. 377 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49931) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wl-nfeqfb 37601 | Extend nfeqf 2383 to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019.) |
| ⊢ (Ⅎ𝑥 𝑦 = 𝑧 ↔ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | ||
| Theorem | wl-nfs1t 37602 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2490. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-equsalvw 37603* |
Version of equsalv 2272 with a disjoint variable condition, and of equsal 2419
with two disjoint variable conditions, which requires fewer axioms. See
also the dual form equsexvw 2006.
This theorem lays the foundation to a transformation of expressions called substitution of set variables in a wff. Only in this particular context we additionally assume 𝜑 and 𝑦 disjoint, stated here as 𝜑(𝑥). Similarly the disjointness of 𝜓 and 𝑥 is expressed by 𝜓(𝑦). Both 𝜑 and 𝜓 may still depend on other set variables, but that is irrelevant here. We want to transform 𝜑(𝑥) into 𝜓(𝑦) such that 𝜓 depends on 𝑦 the same way as 𝜑 depends on 𝑥. This dependency is expressed in our hypothesis (called implicit substitution): (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)). For primitive enough 𝜑 a sort of textual substitution of 𝑥 by 𝑦 is sufficient for such transformation. But note: 𝜑 must not contain wff variables, and the substitution is no proper textual substitution either. We still need grammar information to not accidently replace the x in a token 'x.' denoting multiplication, but only catch set variables 𝑥. Our current stage of development allows only equations and quantifiers make up such primitives. Thanks to equequ1 2026 and cbvalvw 2037 we can then prove in a mechanical way that in fact the implicit substitution holds for each instance. If 𝜑 contains wff variables we cannot use textual transformation any longer, since we don't know how to replace 𝑦 for 𝑥 in placeholders of unknown structure. Our theorem now states, that the generic expression ∀𝑥(𝑥 = 𝑦 → 𝜑) formally behaves as if such a substitution was possible and made. (Contributed by BJ, 31-May-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsald 37604 | Deduction version of equsal 2419. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsaldv 37605* | Deduction version of equsal 2419. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
| Theorem | wl-equsal 37606 | A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 37604 first, and then deriving more specialized versions wl-equsal 37606 and wl-equsal1t 37607 then is more efficient than the other way round, which is possible, too. See also equsal 2419. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | wl-equsal1t 37607 |
The expression 𝑥 = 𝑦 in antecedent position plays an
important role in
predicate logic, namely in implicit substitution. However, occasionally
it is irrelevant, and can safely be dropped. A sufficient condition for
this is when 𝑥 (or 𝑦 or both) is not free in
𝜑.
This theorem is more fundamental than equsal 2419, spimt 2388 or sbft 2274, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | wl-equsalcom 37608 | This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑦 = 𝑥 → 𝜑)) | ||
| Theorem | wl-equsal1i 37609 | The antecedent 𝑥 = 𝑦 is irrelevant, if one or both setvar variables are not free in 𝜑. (Contributed by Wolf Lammen, 1-Sep-2018.) |
| ⊢ (Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | wl-sbid2ft 37610* | A more general version of sbid2vw 2264. (Contributed by Wolf Lammen, 14-May-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | wl-cbvalsbi 37611* | Change bounded variables in a special case. The reverse direction seems to involve ax-11 2162. My hope is that I will in some future be able to prove mo3 2561 with reversed quantifiers not using ax-11 2162. See also the remark in mo4 2563, which lead me to this effort. (Contributed by Wolf Lammen, 5-Mar-2024.) |
| ⊢ (∀𝑥𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sbrimt 37612 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2308. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))) | ||
| Theorem | wl-sblimt 37613 | Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2308. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) | ||
| Theorem | wl-sb9v 37614* | Commutation of quantification and substitution variables based on fewer axioms than sb9 2521. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8ft 37615* | Substitution of variable in universal quantifier. Closed form of sb8f 2356. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eft 37616* | Substitution of variable in existentialal quantifier. Closed form of sb8ef 2357. (Contributed by Wolf Lammen, 27-Apr-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8t 37617 | Substitution of variable in universal quantifier. Closed form of sb8 2519. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8et 37618 | Substitution of variable in universal quantifier. Closed form of sb8e 2520. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sbhbt 37619 | Closed form of sbhb 2523. Characterizing the expression 𝜑 → ∀𝑥𝜑 using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-sbnf1 37620 | Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2360. Note: This theorem shows that sbnf2 2360 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | wl-equsb3 37621 | equsb3 2108 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) | ||
| Theorem | wl-equsb4 37622 | Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
| Theorem | wl-2sb6d 37623 | Version of 2sb6 2091 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑥) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑦 𝑦 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) ⇒ ⊢ (𝜑 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜓 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜓))) | ||
| Theorem | wl-sbcom2d-lem1 37624* | Lemma used to prove wl-sbcom2d 37626. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) | ||
| Theorem | wl-sbcom2d-lem2 37625* | Lemma used to prove wl-sbcom2d 37626. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝜑))) | ||
| Theorem | wl-sbcom2d 37626 | Version of sbcom2 2178 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑤) & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑧) & ⊢ (𝜑 → ¬ ∀𝑧 𝑧 = 𝑦) ⇒ ⊢ (𝜑 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜓)) | ||
| Theorem | wl-sbalnae 37627 | A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal1 37628* | A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) Proof is based on wl-sbalnae 37627 now. See also sbal1 2530. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-sbal2 37629* | Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002.) Proof is based on wl-sbalnae 37627 now. See also sbal2 2531. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
| Theorem | wl-2spsbbi 37630 | spsbbi 2078 applied twice. (Contributed by Wolf Lammen, 5-Aug-2023.) |
| ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) | ||
| Theorem | wl-lem-exsb 37631* | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | wl-lem-nexmo 37632 | This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑧)) | ||
| Theorem | wl-lem-moexsb 37633* |
The antecedent ∀𝑥(𝜑 → 𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is
better suited for usage in proofs. Note that no distinct variable
restriction is placed on 𝜑.
This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑)) | ||
| Theorem | wl-alanbii 37634 | This theorem extends alanimi 1817 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | ||
| Theorem | wl-mo2df 37635 | Version of mof 2560 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo2tf 37636 | Closed form of mof 2560 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-eudf 37637 | Version of eu6 2571 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate disjoint variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ¬ ∀𝑥 𝑥 = 𝑦) & ⊢ (𝜑 → Ⅎ𝑦𝜓) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-eutf 37638 | Closed form of eu6 2571 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | ||
| Theorem | wl-euequf 37639 | euequ 2594 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) | ||
| Theorem | wl-mo2t 37640* | Closed form of mof 2560. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | wl-mo3t 37641* | Closed form of mo3 2561. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
| Theorem | wl-nfsbtv 37642* | Closed form of nfsbv 2333. (Contributed by Wolf Lammen, 2-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | ||
| Theorem | wl-sb8eut 37643 | Substitution of variable in universal quantifier. Closed form of sb8eu 2597. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8eutv 37644* | Substitution of variable in universal quantifier. Closed form of sb8euv 2596. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8mot 37645 | Substitution of variable in universal quantifier. Closed form of sb8mo 2598. (Contributed by Wolf Lammen, 11-Aug-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-sb8motv 37646* |
Substitution of variable in universal quantifier. Closed form of
sb8mo 2598 without ax-13 2374, but requiring 𝑥 and 𝑦 being
disjoint.
This theorem relates to wl-mo3t 37641, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2274 and sbco 2509. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 37641 in a simple fashion. From an educational standpoint, one would assume wl-mo3t 37641 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 3-May-2025.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)) | ||
| Theorem | wl-issetft 37647 | A closed form of issetf 3454. The proof here is a modification of a subproof in vtoclgft 3506, where it could be used to shorten the proof. (Contributed by Wolf Lammen, 25-Jan-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
| Theorem | wl-axc11rc11 37648 |
Proving axc11r 2370 from axc11 2432. The hypotheses are two instances of
axc11 2432 used in the proof here. Some systems
introduce axc11 2432 as an
axiom, see for example System S2 in
https://us.metamath.org/downloads/finiteaxiom.pdf 2432.
By contrast, this database sees the variant axc11r 2370, directly derived from ax-12 2182, as foundational. Later axc11 2432 is proven somewhat trickily, requiring ax-10 2146 and ax-13 2374, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.) |
| ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)) & ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | wl-clabv 37649* |
Variant of df-clab 2712, where the element 𝑥 is required to be
disjoint from the class it is taken from. This restriction meets
similar ones found in other definitions and axioms like ax-ext 2705,
df-clel 2808 and df-cleq 2725. 𝑥 ∈ 𝐴 with 𝐴 depending on 𝑥 can
be the source of side effects, that you rather want to be aware of. So
here we eliminate one possible way of letting this slip in instead.
An expression 𝑥 ∈ 𝐴 with 𝑥, 𝐴 not disjoint, is now only introduced either via ax-8 2115, ax-9 2123, or df-clel 2808. Theorem cleljust 2122 shows that a possible choice does not matter. The original df-clab 2712 can be rederived, see wl-dfclab 37650. In an implementation this theorem is the only user of df-clab. (Contributed by NM, 26-May-1993.) Element and class are disjoint. (Revised by Wolf Lammen, 31-May-2023.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-dfclab 37650 | Rederive df-clab 2712 from wl-clabv 37649. (Contributed by Wolf Lammen, 31-May-2023.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
| Theorem | wl-clabtv 37651* | Using class abstraction in a context, requiring 𝑥 and 𝜑 disjoint, but based on fewer axioms than wl-clabt 37652. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | wl-clabt 37652 | Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv 37651. (Contributed by Wolf Lammen, 29-May-2023.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ (𝜑 → 𝜓)}) | ||
| Theorem | wl-eujustlem1 37653* | Version of cbvexvw 2038 with references to ax-6 1968 listed as antecedents. (Contributed by Wolf Lammen, 18-Feb-2026.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∃𝑦 𝑥 = 𝑦) → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
| Theorem | rabiun 37654* | Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
| ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | iundif1 37655* | Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) | ||
| Theorem | imadifss 37656 | The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) | ||
| Theorem | cureq 37657 | Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) | ||
| Theorem | unceq 37658 | Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵) | ||
| Theorem | curf 37659 | Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → curry 𝐹:𝐴⟶(𝐶 ↑m 𝐵)) | ||
| Theorem | uncf 37660 | Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝐹:𝐴⟶(𝐶 ↑m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶) | ||
| Theorem | curfv 37661 | Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | uncov 37662 | Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹‘𝐴)‘𝐵)) | ||
| Theorem | curunc 37663 | Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝐹:𝐴⟶(𝐶 ↑m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹) | ||
| Theorem | unccur 37664 | Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.) |
| ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ 𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶 ∈ 𝑊) → uncurry curry 𝐹 = 𝐹) | ||
| Theorem | phpreu 37665* | Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | finixpnum 37666* | A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ dom card) → X𝑥 ∈ 𝐴 𝐵 ∈ dom card) | ||
| Theorem | fin2solem 37667* | Lemma for fin2so 37668. (Contributed by Brendan Leahy, 29-Jun-2019.) |
| ⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) | ||
| Theorem | fin2so 37668 | Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.) |
| ⊢ ((𝐴 ∈ FinII ∧ 𝑅 Or 𝐴) → 𝐴 ∈ Fin) | ||
| Theorem | ltflcei 37669 | Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ 𝐴 < -(⌊‘-𝐵))) | ||
| Theorem | leceifl 37670 | Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (⌊‘𝐵))) | ||
| Theorem | sin2h 37671 | Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2))) | ||
| Theorem | cos2h 37672 | Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2))) | ||
| Theorem | tan2h 37673 | Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.) |
| ⊢ (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))) | ||
| Theorem | lindsadd 37674 | In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.) |
| ⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊)) | ||
| Theorem | lindsdom 37675 | A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) | ||
| Theorem | lindsenlbs 37676 | A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) | ||
| Theorem | matunitlindflem1 37677 | One direction of matunitlindf 37679. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) | ||
| Theorem | matunitlindflem2 37678 | One direction of matunitlindf 37679. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) | ||
| Theorem | matunitlindf 37679 | A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.) |
| ⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) | ||
| Theorem | ptrest 37680* | Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((∏t‘𝐹) ↾t X𝑘 ∈ 𝐴 𝑆) = (∏t‘(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) ↾t 𝑆)))) | ||
| Theorem | ptrecube 37681* | Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑃 ∈ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃‘𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) | ||
| Theorem | poimirlem1 37682* | Lemma for poimir 37714- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) | ||
| Theorem | poimirlem2 37683* | Lemma for poimir 37714- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) ⇒ ⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) | ||
| Theorem | poimirlem3 37684* | Lemma for poimir 37714 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f + ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) | ||
| Theorem | poimirlem4 37685* | Lemma for poimir 37714 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) | ||
| Theorem | poimirlem5 37686* | Lemma for poimir 37714 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 0 < (2nd ‘𝑇)) ⇒ ⊢ (𝜑 → (𝐹‘0) = (1st ‘(1st ‘𝑇))) | ||
| Theorem | poimirlem6 37687* | Lemma for poimir 37714 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ (1...((2nd ‘𝑇) − 1))) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem7 37688* | Lemma for poimir 37714, similar to poimirlem6 37687, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((((2nd ‘𝑇) + 1) + 1)...𝑁)) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem8 37689* | Lemma for poimir 37714, establishing that away from the opposite vertex the walks in poimirlem9 37690 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑈)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ((2nd ‘(1st ‘𝑇)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) | ||
| Theorem | poimirlem9 37690* | Lemma for poimir 37714, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) ≠ (2nd ‘(1st ‘𝑇))) ⇒ ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) = ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))) | ||
| Theorem | poimirlem10 37691* | Lemma for poimir 37714 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st ‘𝑇))) | ||
| Theorem | poimirlem11 37692* | Lemma for poimir 37714 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 0) & ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
| Theorem | poimirlem12 37693* | Lemma for poimir 37714 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 𝑁) & ⊢ (𝜑 → 𝑀 ∈ (0...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
| Theorem | poimirlem13 37694* | Lemma for poimir 37714- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 0) | ||
| Theorem | poimirlem14 37695* | Lemma for poimir 37714- for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 𝑁) | ||
| Theorem | poimirlem15 37696* | Lemma for poimir 37714, that the face in poimirlem22 37703 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → 〈〈(1st ‘(1st ‘𝑇)), ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))〉, (2nd ‘𝑇)〉 ∈ 𝑆) | ||
| Theorem | poimirlem16 37697* | Lemma for poimir 37714 establishing the vertices of the simplex of poimirlem17 37698. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st ‘𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))) | ||
| Theorem | poimirlem17 37698* | Lemma for poimir 37714 establishing existence for poimirlem18 37699. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem18 37699* | Lemma for poimir 37714 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem19 37700* | Lemma for poimir 37714 establishing the vertices of the simplex in poimirlem20 37701. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st ‘𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |