| Metamath
Proof Explorer Theorem List (p. 377 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | poimirlem2 37601* | Lemma for poimir 37632- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) ⇒ ⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) | ||
| Theorem | poimirlem3 37602* | Lemma for poimir 37632 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝑇:(1...𝑀)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑀)–1-1-onto→(1...𝑀)) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈(𝑇 ∪ {〈(𝑀 + 1), 0〉}), (𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((𝑇 ∪ {〈(𝑀 + 1), 0〉}) ∘f + ((((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((𝑇 ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))))) | ||
| Theorem | poimirlem4 37603* | Lemma for poimir 37632 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑁) ⇒ ⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) | ||
| Theorem | poimirlem5 37604* | Lemma for poimir 37632 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 0 < (2nd ‘𝑇)) ⇒ ⊢ (𝜑 → (𝐹‘0) = (1st ‘(1st ‘𝑇))) | ||
| Theorem | poimirlem6 37605* | Lemma for poimir 37632 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ (1...((2nd ‘𝑇) − 1))) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹‘𝑀)‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem7 37606* | Lemma for poimir 37632, similar to poimirlem6 37605, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 ∈ ((((2nd ‘𝑇) + 1) + 1)...𝑁)) ⇒ ⊢ (𝜑 → (℩𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st ‘𝑇))‘𝑀)) | ||
| Theorem | poimirlem8 37607* | Lemma for poimir 37632, establishing that away from the opposite vertex the walks in poimirlem9 37608 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑈)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ((2nd ‘(1st ‘𝑇)) ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) | ||
| Theorem | poimirlem9 37608* | Lemma for poimir 37632, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) ≠ (2nd ‘(1st ‘𝑇))) ⇒ ⊢ (𝜑 → (2nd ‘(1st ‘𝑈)) = ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))) | ||
| Theorem | poimirlem10 37609* | Lemma for poimir 37632 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st ‘𝑇))) | ||
| Theorem | poimirlem11 37610* | Lemma for poimir 37632 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 0) & ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
| Theorem | poimirlem12 37611* | Lemma for poimir 37632 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑈) = 𝑁) & ⊢ (𝜑 → 𝑀 ∈ (0...(𝑁 − 1))) ⇒ ⊢ (𝜑 → ((2nd ‘(1st ‘𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st ‘𝑈)) “ (1...𝑀))) | ||
| Theorem | poimirlem13 37612* | Lemma for poimir 37632- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 0) | ||
| Theorem | poimirlem14 37613* | Lemma for poimir 37632- for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) ⇒ ⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 𝑁) | ||
| Theorem | poimirlem15 37614* | Lemma for poimir 37632, that the face in poimirlem22 37621 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) ⇒ ⊢ (𝜑 → 〈〈(1st ‘(1st ‘𝑇)), ((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))))〉, (2nd ‘𝑇)〉 ∈ 𝑆) | ||
| Theorem | poimirlem16 37615* | Lemma for poimir 37632 establishing the vertices of the simplex of poimirlem17 37616. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st ‘𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))) | ||
| Theorem | poimirlem17 37616* | Lemma for poimir 37632 establishing existence for poimirlem18 37617. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem18 37617* | Lemma for poimir 37632 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) & ⊢ (𝜑 → (2nd ‘𝑇) = 0) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem19 37618* | Lemma for poimir 37632 establishing the vertices of the simplex in poimirlem20 37619. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st ‘𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) | ||
| Theorem | poimirlem20 37619* | Lemma for poimir 37632 establishing existence for poimirlem21 37620. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem21 37620* | Lemma for poimir 37632 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ (𝜑 → (2nd ‘𝑇) = 𝑁) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem22 37621* | Lemma for poimir 37632, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st ‘(1st ‘𝑡)) ∘f + ((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} & ⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) | ||
| Theorem | poimirlem23 37622* | Lemma for poimir 37632, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | ||
| Theorem | poimirlem24 37623* | Lemma for poimir 37632, two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))))) | ||
| Theorem | poimirlem25 37624* | Lemma for poimir 37632 stating that for a given simplex such that no vertex maps to 𝑁, the number of admissible faces is even. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) & ⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ⇒ ⊢ (𝜑 → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) | ||
| Theorem | poimirlem26 37625* | Lemma for poimir 37632 showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) ⇒ ⊢ (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) | ||
| Theorem | poimirlem27 37626* | Lemma for poimir 37632 showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) ⇒ ⊢ (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}))) | ||
| Theorem | poimirlem28 37627* | Lemma for poimir 37632, a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) | ||
| Theorem | poimirlem29 37628* | Lemma for poimir 37632 connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) ⇒ ⊢ (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝐶‘𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝐶 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) | ||
| Theorem | poimirlem30 37629* | Lemma for poimir 37632 combining poimirlem29 37628 with bwth 23313. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) | ||
| Theorem | poimirlem31 37630* | Lemma for poimir 37632, assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 37629 and poimirlem28 37627. Equation (2) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ 𝑃 = ((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) & ⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < )) ⇒ ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) | ||
| Theorem | poimirlem32 37631* | Lemma for poimir 37632, combining poimirlem28 37627, poimirlem30 37629, and poimirlem31 37630 to get Equation (1) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) | ||
| Theorem | poimir 37632* | Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 (𝐹‘𝑐) = ((1...𝑁) × {0})) | ||
| Theorem | broucube 37633* | Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐼 = ((0[,]1) ↑m (1...𝑁)) & ⊢ 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))})) & ⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐼 𝑐 = (𝐹‘𝑐)) | ||
| Theorem | heicant 37634 | Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → (MetOpen‘𝐶) ∈ Comp) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷))) | ||
| Theorem | opnmbllem0 37635* | Lemma for ismblfin 37640; could also be used to shorten proof of opnmbllem 25518. (Contributed by Brendan Leahy, 13-Jul-2018.) |
| ⊢ (𝐴 ∈ (topGen‘ran (,)) → ∪ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴) | ||
| Theorem | mblfinlem1 37636* | Lemma for ismblfin 37640, ordering the sets of dyadic intervals that are antichains under subset and whose unions are contained entirely in 𝐴. (Contributed by Brendan Leahy, 13-Jul-2018.) |
| ⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) | ||
| Theorem | mblfinlem2 37637* | Lemma for ismblfin 37640, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
| ⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) | ||
| Theorem | mblfinlem3 37638* | The difference between two sets measurable by the criterion in ismblfin 37640 is itself measurable by the same. Corollary 0.3 of [Viaclovsky7] p. 3. (Contributed by Brendan Leahy, 25-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐵 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴 ∖ 𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴 ∖ 𝐵))) | ||
| Theorem | mblfinlem4 37639* | Backward direction of ismblfin 37640. (Contributed by Brendan Leahy, 28-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) | ||
| Theorem | ismblfin 37640* | Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) | ||
| Theorem | ovoliunnfl 37641* | ovoliun 25422 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.) |
| ⊢ ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓‘𝑛) ⊆ ℝ ∧ (vol*‘(𝑓‘𝑛)) ∈ ℝ)) → (vol*‘∪ 𝑚 ∈ ℕ (𝑓‘𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓‘𝑚)))), ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
| Theorem | ex-ovoliunnfl 37642* | Demonstration of ovoliunnfl 37641. (Contributed by Brendan Leahy, 21-Nov-2017.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
| Theorem | voliunnfl 37643* | voliun 25471 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.) |
| ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓‘𝑛))) & ⊢ ((∀𝑛 ∈ ℕ ((𝑓‘𝑛) ∈ dom vol ∧ (vol‘(𝑓‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)) → (vol‘∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) = sup(ran 𝑆, ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
| Theorem | volsupnfl 37644* | volsup 25473 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.) |
| ⊢ ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘∪ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < )) ⇒ ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴 ≠ ℝ) | ||
| Theorem | mbfresfi 37645* | Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) & ⊢ (𝜑 → ∪ 𝑆 = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | mbfposadd 37646* | If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn) | ||
| Theorem | cnambfre 37647 | A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.) |
| ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ ((◡(((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn) | ||
| Theorem | dvtanlem 37648 | Lemma for dvtan 37649- the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (◡cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld) | ||
| Theorem | dvtan 37649 | Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.) |
| ⊢ (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2)) | ||
| Theorem | itg2addnclem 37650* | An alternate expression for the ∫2 integral that includes an arbitrarily small but strictly positive "buffer zone" wherever the simple function is nonzero. (Contributed by Brendan Leahy, 10-Oct-2017.) (Revised by Brendan Leahy, 10-Mar-2018.) |
| ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⇒ ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup(𝐿, ℝ*, < )) | ||
| Theorem | itg2addnclem2 37651* | Lemma for itg2addnc 37653. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) ⇒ ⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∈ dom ∫1) | ||
| Theorem | itg2addnclem3 37652* | Lemma incomprehensible in isolation split off to shorten proof of itg2addnc 37653. (Contributed by Brendan Leahy, 11-Mar-2018.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘r ≤ (𝐹 ∘f + 𝐺) ∧ 𝑠 = (∫1‘ℎ)) → ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘r ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘r ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))) | ||
| Theorem | itg2addnc 37653 | Alternate proof of itg2add 25676 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 25625, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 10348, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) & ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝐹 ∘f + 𝐺)) = ((∫2‘𝐹) + (∫2‘𝐺))) | ||
| Theorem | itg2gt0cn 37654* | itg2gt0 25677 holds on functions continuous on an open interval in the absence of ax-cc 10348. The fourth hypothesis is made unnecessary by the continuity hypothesis. (Contributed by Brendan Leahy, 16-Nov-2017.) |
| ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) ⇒ ⊢ (𝜑 → 0 < (∫2‘𝐹)) | ||
| Theorem | ibladdnclem 37655* | Lemma for ibladdnc 37656; cf ibladdlem 25737, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 37653. (Contributed by Brendan Leahy, 31-Oct-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 = (𝐵 + 𝐶)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ) | ||
| Theorem | ibladdnc 37656* | Choice-free analogue of itgadd 25742. A measurability hypothesis is necessitated by the loss of mbfadd 25578; for large classes of functions, such as continuous functions, it should be relatively easy to show. (Contributed by Brendan Leahy, 1-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1) | ||
| Theorem | itgaddnclem1 37657* | Lemma for itgaddnc 37659; cf. itgaddlem1 25740. (Contributed by Brendan Leahy, 7-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgaddnclem2 37658* | Lemma for itgaddnc 37659; cf. itgaddlem2 25741. (Contributed by Brendan Leahy, 10-Nov-2017.) (Revised by Brendan Leahy, 3-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgaddnc 37659* | Choice-free analogue of itgadd 25742. (Contributed by Brendan Leahy, 11-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | iblsubnc 37660* | Choice-free analogue of iblsub 25739. (Contributed by Brendan Leahy, 11-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝐿1) | ||
| Theorem | itgsubnc 37661* | Choice-free analogue of itgsub 25743. (Contributed by Brendan Leahy, 11-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ MblFn) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 − 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) | ||
| Theorem | iblabsnclem 37662* | Lemma for iblabsnc 37663; cf. iblabslem 25745. (Contributed by Brendan Leahy, 7-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐺 ∈ MblFn ∧ (∫2‘𝐺) ∈ ℝ)) | ||
| Theorem | iblabsnc 37663* | Choice-free analogue of iblabs 25746. As with ibladdnc 37656, a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1) | ||
| Theorem | iblmulc2nc 37664* | Choice-free analogue of iblmulc2 25748. (Contributed by Brendan Leahy, 17-Nov-2017.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) | ||
| Theorem | itgmulc2nclem1 37665* | Lemma for itgmulc2nc 37667; cf. itgmulc2lem1 25749. (Contributed by Brendan Leahy, 17-Nov-2017.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgmulc2nclem2 37666* | Lemma for itgmulc2nc 37667; cf. itgmulc2lem2 25750. (Contributed by Brendan Leahy, 19-Nov-2017.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgmulc2nc 37667* | Choice-free analogue of itgmulc2 25751. (Contributed by Brendan Leahy, 19-Nov-2017.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgabsnc 37668* | Choice-free analogue of itgabs 25752. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) & ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ MblFn) ⇒ ⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) | ||
| Theorem | itggt0cn 37669* | itggt0 25761 holds for continuous functions in the absence of ax-cc 10348. (Contributed by Brendan Leahy, 16-Nov-2017.) |
| ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) ⇒ ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) | ||
| Theorem | ftc1cnnclem 37670* | Lemma for ftc1cnnc 37671; cf. ftc1lem4 25962. The stronger assumptions of ftc1cn 25966 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝑐 ∈ (𝐴(,)𝐵)) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺‘𝑧) − (𝐺‘𝑐)) / (𝑧 − 𝑐))) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑋 − 𝑐)) < 𝑅) & ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑌 − 𝑐)) < 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐))) < 𝐸) | ||
| Theorem | ftc1cnnc 37671* | Choice-free proof of ftc1cn 25966. (Contributed by Brendan Leahy, 20-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) | ||
| Theorem | ftc1anclem1 37672 | Lemma for ftc1anc 37680- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 25575, but this proof avoids ax-cc 10348. (Contributed by Brendan Leahy, 18-Jun-2018.) |
| ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn) | ||
| Theorem | ftc1anclem2 37673* | Lemma for ftc1anc 37680- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.) |
| ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ 𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐴, (abs‘(𝐺‘(𝐹‘𝑡))), 0))) ∈ ℝ) | ||
| Theorem | ftc1anclem3 37674 | Lemma for ftc1anc 37680- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (abs ∘ (𝐹 ∘f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1) | ||
| Theorem | ftc1anclem4 37675* | Lemma for ftc1anc 37680. (Contributed by Brendan Leahy, 17-Jun-2018.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) | ||
| Theorem | ftc1anclem5 37676* | Lemma for ftc1anc 37680, the existence of a simple function the integral of whose pointwise difference from the function is less than a given positive real. (Contributed by Brendan Leahy, 17-Jun-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌) | ||
| Theorem | ftc1anclem6 37677* | Lemma for ftc1anc 37680- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌) | ||
| Theorem | ftc1anclem7 37678* | Lemma for ftc1anc 37680. (Contributed by Brendan Leahy, 13-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (((((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) | ||
| Theorem | ftc1anclem8 37679* | Lemma for ftc1anc 37680. (Contributed by Brendan Leahy, 29-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (((((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < 𝑦) | ||
| Theorem | ftc1anc 37680* | ftc1a 25960 holds for functions that obey the triangle inequality in the absence of ax-cc 10348. Theorem 565Ma of [Fremlin5] p. 220. (Contributed by Brendan Leahy, 11-May-2018.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠(𝐹‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝑠, (abs‘(𝐹‘𝑡)), 0)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | ||
| Theorem | ftc2nc 37681* | Choice-free proof of ftc2 25967. (Contributed by Brendan Leahy, 19-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | asindmre 37682 | Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (𝐷 ∩ ℝ) = (-1(,)1) | ||
| Theorem | dvasin 37683* | Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (ℂ D (arcsin ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvacos 37684* | Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⇒ ⊢ (ℂ D (arccos ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvreasin 37685 | Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | dvreacos 37686 | Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) | ||
| Theorem | areacirclem1 37687* | Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ (𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2)))))) | ||
| Theorem | areacirclem2 37688* | Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) | ||
| Theorem | areacirclem3 37689* | Integrability of cross-section of circle. (Contributed by Brendan Leahy, 26-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1) | ||
| Theorem | areacirclem4 37690* | Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) | ||
| Theorem | areacirclem5 37691* | Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⇒ ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) | ||
| Theorem | areacirc 37692* | The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⇒ ⊢ ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2))) | ||
| Theorem | unirep 37693* | Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ (𝑦 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐷 → 𝐵 = 𝐶) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → 𝐵 = 𝐹) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → (℩𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) = 𝐶) | ||
| Theorem | cover2 37694* | Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐴 = ∪ 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) | ||
| Theorem | cover2g 37695* | Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.) |
| ⊢ 𝐴 = ∪ 𝐵 ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) | ||
| Theorem | brabg2 37696* | Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} & ⊢ (𝜒 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 ↔ 𝜒)) | ||
| Theorem | opelopab3 37697* | Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝜒 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | ||
| Theorem | cocanfo 37698 | Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → 𝐺 = 𝐻) | ||
| Theorem | brresi2 37699 | Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ↾ 𝐶)𝐵 → 𝐴𝑅𝐵) | ||
| Theorem | fnopabeqd 37700* | Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |