| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cur | Structured version Visualization version GIF version | ||
| Description: Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-cur | ⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | ccur 8290 | . 2 class curry 𝐹 |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | 1 | cdm 5685 | . . . 4 class dom 𝐹 |
| 5 | 4 | cdm 5685 | . . 3 class dom dom 𝐹 |
| 6 | 3 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | vy | . . . . . . 7 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . 6 class 𝑦 |
| 9 | 6, 8 | cop 4632 | . . . . 5 class 〈𝑥, 𝑦〉 |
| 10 | vz | . . . . . 6 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . 5 class 𝑧 |
| 12 | 9, 11, 1 | wbr 5143 | . . . 4 wff 〈𝑥, 𝑦〉𝐹𝑧 |
| 13 | 12, 7, 10 | copab 5205 | . . 3 class {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧} |
| 14 | 3, 5, 13 | cmpt 5225 | . 2 class (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) |
| 15 | 2, 14 | wceq 1540 | 1 wff curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpocurryd 8294 cureq 37603 curf 37605 curunc 37609 matunitlindf 37625 |
| Copyright terms: Public domain | W3C validator |