Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cureq | Structured version Visualization version GIF version |
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
Ref | Expression |
---|---|
cureq | ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5812 | . . . 4 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
2 | 1 | dmeqd 5814 | . . 3 ⊢ (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵) |
3 | breq 5076 | . . . 4 ⊢ (𝐴 = 𝐵 → (〈𝑥, 𝑦〉𝐴𝑧 ↔ 〈𝑥, 𝑦〉𝐵𝑧)) | |
4 | 3 | opabbidv 5140 | . . 3 ⊢ (𝐴 = 𝐵 → {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧} = {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧}) |
5 | 2, 4 | mpteq12dv 5165 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧})) |
6 | df-cur 8083 | . 2 ⊢ curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧}) | |
7 | df-cur 8083 | . 2 ⊢ curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧}) | |
8 | 5, 6, 7 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4567 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 dom cdm 5589 curry ccur 8081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-dm 5599 df-cur 8083 |
This theorem is referenced by: curfv 35757 matunitlindf 35775 |
Copyright terms: Public domain | W3C validator |