![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cureq | Structured version Visualization version GIF version |
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
Ref | Expression |
---|---|
cureq | ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5928 | . . . 4 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
2 | 1 | dmeqd 5930 | . . 3 ⊢ (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵) |
3 | breq 5168 | . . . 4 ⊢ (𝐴 = 𝐵 → (〈𝑥, 𝑦〉𝐴𝑧 ↔ 〈𝑥, 𝑦〉𝐵𝑧)) | |
4 | 3 | opabbidv 5232 | . . 3 ⊢ (𝐴 = 𝐵 → {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧} = {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧}) |
5 | 2, 4 | mpteq12dv 5257 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧})) |
6 | df-cur 8308 | . 2 ⊢ curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐴𝑧}) | |
7 | df-cur 8308 | . 2 ⊢ curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐵𝑧}) | |
8 | 5, 6, 7 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cop 4654 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 dom cdm 5700 curry ccur 8306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-dm 5710 df-cur 8308 |
This theorem is referenced by: curfv 37560 matunitlindf 37578 |
Copyright terms: Public domain | W3C validator |