![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cureq | Structured version Visualization version GIF version |
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
Ref | Expression |
---|---|
cureq | ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5894 | . . . 4 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
2 | 1 | dmeqd 5896 | . . 3 ⊢ (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵) |
3 | breq 5141 | . . . 4 ⊢ (𝐴 = 𝐵 → (⟨𝑥, 𝑦⟩𝐴𝑧 ↔ ⟨𝑥, 𝑦⟩𝐵𝑧)) | |
4 | 3 | opabbidv 5205 | . . 3 ⊢ (𝐴 = 𝐵 → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧}) |
5 | 2, 4 | mpteq12dv 5230 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧})) |
6 | df-cur 8248 | . 2 ⊢ curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧}) | |
7 | df-cur 8248 | . 2 ⊢ curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧}) | |
8 | 5, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⟨cop 4627 class class class wbr 5139 {copab 5201 ↦ cmpt 5222 dom cdm 5667 curry ccur 8246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-mpt 5223 df-dm 5677 df-cur 8248 |
This theorem is referenced by: curfv 36971 matunitlindf 36989 |
Copyright terms: Public domain | W3C validator |