Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cureq Structured version   Visualization version   GIF version

Theorem cureq 37556
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
cureq (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)

Proof of Theorem cureq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5928 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
21dmeqd 5930 . . 3 (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵)
3 breq 5168 . . . 4 (𝐴 = 𝐵 → (⟨𝑥, 𝑦𝐴𝑧 ↔ ⟨𝑥, 𝑦𝐵𝑧))
43opabbidv 5232 . . 3 (𝐴 = 𝐵 → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
52, 4mpteq12dv 5257 . 2 (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧}))
6 df-cur 8308 . 2 curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧})
7 df-cur 8308 . 2 curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
85, 6, 73eqtr4g 2805 1 (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cop 4654   class class class wbr 5166  {copab 5228  cmpt 5249  dom cdm 5700  curry ccur 8306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-dm 5710  df-cur 8308
This theorem is referenced by:  curfv  37560  matunitlindf  37578
  Copyright terms: Public domain W3C validator