Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cureq Structured version   Visualization version   GIF version

Theorem cureq 37590
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
cureq (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)

Proof of Theorem cureq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5867 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
21dmeqd 5869 . . 3 (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵)
3 breq 5109 . . . 4 (𝐴 = 𝐵 → (⟨𝑥, 𝑦𝐴𝑧 ↔ ⟨𝑥, 𝑦𝐵𝑧))
43opabbidv 5173 . . 3 (𝐴 = 𝐵 → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
52, 4mpteq12dv 5194 . 2 (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧}))
6 df-cur 8246 . 2 curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧})
7 df-cur 8246 . 2 curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
85, 6, 73eqtr4g 2789 1 (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4595   class class class wbr 5107  {copab 5169  cmpt 5188  dom cdm 5638  curry ccur 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-dm 5648  df-cur 8246
This theorem is referenced by:  curfv  37594  matunitlindf  37612
  Copyright terms: Public domain W3C validator