![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cureq | Structured version Visualization version GIF version |
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.) |
Ref | Expression |
---|---|
cureq | ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5906 | . . . 4 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
2 | 1 | dmeqd 5908 | . . 3 ⊢ (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵) |
3 | breq 5150 | . . . 4 ⊢ (𝐴 = 𝐵 → (⟨𝑥, 𝑦⟩𝐴𝑧 ↔ ⟨𝑥, 𝑦⟩𝐵𝑧)) | |
4 | 3 | opabbidv 5214 | . . 3 ⊢ (𝐴 = 𝐵 → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧}) |
5 | 2, 4 | mpteq12dv 5239 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧})) |
6 | df-cur 8272 | . 2 ⊢ curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐴𝑧}) | |
7 | df-cur 8272 | . 2 ⊢ curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩𝐵𝑧}) | |
8 | 5, 6, 7 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⟨cop 4635 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 dom cdm 5678 curry ccur 8270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-mpt 5232 df-dm 5688 df-cur 8272 |
This theorem is referenced by: curfv 37073 matunitlindf 37091 |
Copyright terms: Public domain | W3C validator |