Step | Hyp | Ref
| Expression |
1 | | fvoveq1 7307 |
. . . . . . . 8
⊢ (𝐼 = ∅ →
(Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat
𝑅))) |
2 | | mat0dimbas0 21624 |
. . . . . . . 8
⊢ (𝑅 ∈ Field →
(Base‘(∅ Mat 𝑅)) = {∅}) |
3 | 1, 2 | sylan9eq 2799 |
. . . . . . 7
⊢ ((𝐼 = ∅ ∧ 𝑅 ∈ Field) →
(Base‘(𝐼 Mat 𝑅)) = {∅}) |
4 | 3 | eleq2d 2825 |
. . . . . 6
⊢ ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅})) |
5 | | elsni 4579 |
. . . . . 6
⊢ (𝑀 ∈ {∅} → 𝑀 = ∅) |
6 | 4, 5 | syl6bi 252 |
. . . . 5
⊢ ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅)) |
7 | 6 | imdistanda 572 |
. . . 4
⊢ (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅))) |
8 | 7 | impcom 408 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅)) |
9 | | isfld 20009 |
. . . . . . . 8
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
10 | 9 | simplbi 498 |
. . . . . . 7
⊢ (𝑅 ∈ Field → 𝑅 ∈
DivRing) |
11 | | drngring 20007 |
. . . . . . 7
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
12 | | eqid 2739 |
. . . . . . . . 9
⊢ (∅
Mat 𝑅) = (∅ Mat 𝑅) |
13 | 12 | mat0dimid 21626 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘(∅ Mat 𝑅)) = ∅) |
14 | | 0fin 8963 |
. . . . . . . . . 10
⊢ ∅
∈ Fin |
15 | 12 | matring 21601 |
. . . . . . . . . 10
⊢ ((∅
∈ Fin ∧ 𝑅 ∈
Ring) → (∅ Mat 𝑅) ∈ Ring) |
16 | 14, 15 | mpan 687 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (∅ Mat
𝑅) ∈
Ring) |
17 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)) |
18 | | eqid 2739 |
. . . . . . . . . 10
⊢
(1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅)) |
19 | 17, 18 | 1unit 19909 |
. . . . . . . . 9
⊢ ((∅
Mat 𝑅) ∈ Ring →
(1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅))) |
20 | 16, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅))) |
21 | 13, 20 | eqeltrrd 2841 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ∅
∈ (Unit‘(∅ Mat 𝑅))) |
22 | 10, 11, 21 | 3syl 18 |
. . . . . 6
⊢ (𝑅 ∈ Field → ∅
∈ (Unit‘(∅ Mat 𝑅))) |
23 | | f0 6664 |
. . . . . . . . 9
⊢
∅:∅⟶(Base‘(𝑅 freeLMod ∅)) |
24 | | dm0 5832 |
. . . . . . . . . 10
⊢ dom
∅ = ∅ |
25 | 24 | feq2i 6601 |
. . . . . . . . 9
⊢
(∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔
∅:∅⟶(Base‘(𝑅 freeLMod ∅))) |
26 | 23, 25 | mpbir 230 |
. . . . . . . 8
⊢
∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) |
27 | | rzal 4440 |
. . . . . . . . 9
⊢ (dom
∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦(
·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod
∅))‘(∅ “ (dom ∅ ∖ {𝑥})))) |
28 | 24, 27 | ax-mp 5 |
. . . . . . . 8
⊢
∀𝑥 ∈ dom
∅∀𝑦 ∈
((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦(
·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod
∅))‘(∅ “ (dom ∅ ∖ {𝑥}))) |
29 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑅 freeLMod ∅) ∈
V |
30 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Base‘(𝑅
freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅)) |
31 | | eqid 2739 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘(𝑅 freeLMod ∅)) = (
·𝑠 ‘(𝑅 freeLMod ∅)) |
32 | | eqid 2739 |
. . . . . . . . . 10
⊢
(LSpan‘(𝑅
freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅)) |
33 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Scalar‘(𝑅
freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅)) |
34 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘(𝑅 freeLMod ∅))) =
(Base‘(Scalar‘(𝑅 freeLMod ∅))) |
35 | | eqid 2739 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘(𝑅 freeLMod ∅))) =
(0g‘(Scalar‘(𝑅 freeLMod ∅))) |
36 | 30, 31, 32, 33, 34, 35 | islindf 21028 |
. . . . . . . . 9
⊢ (((𝑅 freeLMod ∅) ∈ V
∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom
∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈
((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦(
·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod
∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))) |
37 | 29, 14, 36 | mp2an 689 |
. . . . . . . 8
⊢ (∅
LIndF (𝑅 freeLMod ∅)
↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈
((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦(
·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod
∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))) |
38 | 26, 28, 37 | mpbir2an 708 |
. . . . . . 7
⊢ ∅
LIndF (𝑅 freeLMod
∅) |
39 | 38 | a1i 11 |
. . . . . 6
⊢ (𝑅 ∈ Field → ∅
LIndF (𝑅 freeLMod
∅)) |
40 | 22, 39 | 2thd 264 |
. . . . 5
⊢ (𝑅 ∈ Field → (∅
∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))) |
41 | | fvoveq1 7307 |
. . . . . . . 8
⊢ (𝐼 = ∅ →
(Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat
𝑅))) |
42 | | eleq12 2829 |
. . . . . . . 8
⊢ ((𝑀 = ∅ ∧
(Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat
𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈
(Unit‘(∅ Mat 𝑅)))) |
43 | 41, 42 | sylan2 593 |
. . . . . . 7
⊢ ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈
(Unit‘(∅ Mat 𝑅)))) |
44 | | cureq 35762 |
. . . . . . . . 9
⊢ (𝑀 = ∅ → curry 𝑀 = curry
∅) |
45 | | df-cur 8092 |
. . . . . . . . . 10
⊢ curry
∅ = (𝑥 ∈ dom dom
∅ ↦ {〈𝑦,
𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧}) |
46 | 24 | dmeqi 5816 |
. . . . . . . . . . . 12
⊢ dom dom
∅ = dom ∅ |
47 | 46, 24 | eqtri 2767 |
. . . . . . . . . . 11
⊢ dom dom
∅ = ∅ |
48 | | mpteq1 5168 |
. . . . . . . . . . 11
⊢ (dom dom
∅ = ∅ → (𝑥
∈ dom dom ∅ ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧}) = (𝑥 ∈ ∅ ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧})) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom dom ∅ ↦
{〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧}) = (𝑥 ∈ ∅ ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧}) |
50 | | mpt0 6584 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∅ ↦
{〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉∅𝑧}) = ∅ |
51 | 45, 49, 50 | 3eqtri 2771 |
. . . . . . . . 9
⊢ curry
∅ = ∅ |
52 | 44, 51 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑀 = ∅ → curry 𝑀 = ∅) |
53 | | oveq2 7292 |
. . . . . . . 8
⊢ (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅)) |
54 | 52, 53 | breqan12d 5091 |
. . . . . . 7
⊢ ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅))) |
55 | 43, 54 | bibi12d 346 |
. . . . . 6
⊢ ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈
(Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))) |
56 | 55 | biimparc 480 |
. . . . 5
⊢
(((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
57 | 40, 56 | sylan 580 |
. . . 4
⊢ ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
58 | 57 | anassrs 468 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
59 | 8, 58 | sylancom 588 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
60 | 9 | simprbi 497 |
. . . . 5
⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
61 | | eqid 2739 |
. . . . . 6
⊢ (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅) |
62 | | eqid 2739 |
. . . . . 6
⊢ (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅) |
63 | | eqid 2739 |
. . . . . 6
⊢
(Base‘(𝐼 Mat
𝑅)) = (Base‘(𝐼 Mat 𝑅)) |
64 | | eqid 2739 |
. . . . . 6
⊢
(Unit‘(𝐼 Mat
𝑅)) = (Unit‘(𝐼 Mat 𝑅)) |
65 | | eqid 2739 |
. . . . . 6
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
66 | 61, 62, 63, 64, 65 | matunit 21836 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))) |
67 | 60, 66 | sylan 580 |
. . . 4
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))) |
68 | 67 | adantr 481 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))) |
69 | | eqid 2739 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
70 | | eqid 2739 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
71 | 69, 65, 70 | drngunit 20005 |
. . . . . . . . 9
⊢ (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅)))) |
72 | 10, 71 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅)))) |
73 | 72 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅)))) |
74 | 62, 61, 63, 69 | mdetcl 21754 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅)) |
75 | 60, 74 | sylan 580 |
. . . . . . . 8
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅)) |
76 | 75 | biantrurd 533 |
. . . . . . 7
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅)))) |
77 | 73, 76 | bitr4d 281 |
. . . . . 6
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅))) |
78 | 77 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅))) |
79 | 61, 63 | matrcl 21568 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V)) |
80 | 79 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin) |
81 | 80 | pm4.71i 560 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin)) |
82 | | xpfi 9094 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin) |
83 | 82 | anidms 567 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin) |
84 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼)) |
85 | 84, 69 | frlmfibas 20978 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) |
86 | 83, 85 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼)))) |
87 | 61, 84 | matbas 21569 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
88 | 87 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
89 | 86, 88 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝐼 Mat 𝑅))) |
90 | 89 | eleq2d 2825 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))) |
91 | | fvex 6796 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅)
∈ V |
92 | | elmapg 8637 |
. . . . . . . . . . . . . . 15
⊢
(((Base‘𝑅)
∈ V ∧ (𝐼 ×
𝐼) ∈ Fin) →
(𝑀 ∈
((Base‘𝑅)
↑m (𝐼
× 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
93 | 91, 83, 92 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
94 | 93 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
95 | 90, 94 | bitr3d 280 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
96 | 95 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))) |
97 | 96 | pm5.32rd 578 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin))) |
98 | 81, 97 | syl5bb 283 |
. . . . . . . . 9
⊢ (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin))) |
99 | 98 | biimpd 228 |
. . . . . . . 8
⊢ (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin))) |
100 | 99 | imdistani 569 |
. . . . . . 7
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin))) |
101 | | anass 469 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin))) |
102 | 100, 101 | sylibr 233 |
. . . . . 6
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin)) |
103 | | eldifsn 4721 |
. . . . . . . 8
⊢ (𝐼 ∈ (Fin ∖ {∅})
↔ (𝐼 ∈ Fin ∧
𝐼 ≠
∅)) |
104 | | matunitlindflem1 35782 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
105 | 104 | necon1ad 2961 |
. . . . . . . 8
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
106 | 103, 105 | sylan2br 595 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
107 | 106 | anassrs 468 |
. . . . . 6
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
108 | 102, 107 | sylan 580 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
109 | 78, 108 | sylbid 239 |
. . . 4
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
110 | | matunitlindflem2 35783 |
. . . . 5
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) |
111 | 110 | ex 413 |
. . . 4
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))) |
112 | 109, 111 | impbid 211 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
113 | 68, 112 | bitrd 278 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |
114 | 59, 113 | pm2.61dane 3033 |
1
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼))) |