Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindf Structured version   Visualization version   GIF version

Theorem matunitlindf 34884
Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindf ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Proof of Theorem matunitlindf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7173 . . . . . . . 8 (𝐼 = ∅ → (Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
2 mat0dimbas0 21069 . . . . . . . 8 (𝑅 ∈ Field → (Base‘(∅ Mat 𝑅)) = {∅})
31, 2sylan9eq 2876 . . . . . . 7 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (Base‘(𝐼 Mat 𝑅)) = {∅})
43eleq2d 2898 . . . . . 6 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅}))
5 elsni 4578 . . . . . 6 (𝑀 ∈ {∅} → 𝑀 = ∅)
64, 5syl6bi 255 . . . . 5 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅))
76imdistanda 574 . . . 4 (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅)))
87impcom 410 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅))
9 isfld 19505 . . . . . . . 8 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
109simplbi 500 . . . . . . 7 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
11 drngring 19503 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
12 eqid 2821 . . . . . . . . 9 (∅ Mat 𝑅) = (∅ Mat 𝑅)
1312mat0dimid 21071 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅)
14 0fin 8740 . . . . . . . . . 10 ∅ ∈ Fin
1512matring 21046 . . . . . . . . . 10 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ Mat 𝑅) ∈ Ring)
1614, 15mpan 688 . . . . . . . . 9 (𝑅 ∈ Ring → (∅ Mat 𝑅) ∈ Ring)
17 eqid 2821 . . . . . . . . . 10 (Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))
18 eqid 2821 . . . . . . . . . 10 (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅))
1917, 181unit 19402 . . . . . . . . 9 ((∅ Mat 𝑅) ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2016, 19syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2113, 20eqeltrrd 2914 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
2210, 11, 213syl 18 . . . . . 6 (𝑅 ∈ Field → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
23 f0 6555 . . . . . . . . 9 ∅:∅⟶(Base‘(𝑅 freeLMod ∅))
24 dm0 5785 . . . . . . . . . 10 dom ∅ = ∅
2524feq2i 6501 . . . . . . . . 9 (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔ ∅:∅⟶(Base‘(𝑅 freeLMod ∅)))
2623, 25mpbir 233 . . . . . . . 8 ∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅))
27 rzal 4453 . . . . . . . . 9 (dom ∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))
2824, 27ax-mp 5 . . . . . . . 8 𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))
29 ovex 7183 . . . . . . . . 9 (𝑅 freeLMod ∅) ∈ V
30 eqid 2821 . . . . . . . . . 10 (Base‘(𝑅 freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅))
31 eqid 2821 . . . . . . . . . 10 ( ·𝑠 ‘(𝑅 freeLMod ∅)) = ( ·𝑠 ‘(𝑅 freeLMod ∅))
32 eqid 2821 . . . . . . . . . 10 (LSpan‘(𝑅 freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅))
33 eqid 2821 . . . . . . . . . 10 (Scalar‘(𝑅 freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅))
34 eqid 2821 . . . . . . . . . 10 (Base‘(Scalar‘(𝑅 freeLMod ∅))) = (Base‘(Scalar‘(𝑅 freeLMod ∅)))
35 eqid 2821 . . . . . . . . . 10 (0g‘(Scalar‘(𝑅 freeLMod ∅))) = (0g‘(Scalar‘(𝑅 freeLMod ∅)))
3630, 31, 32, 33, 34, 35islindf 20950 . . . . . . . . 9 (((𝑅 freeLMod ∅) ∈ V ∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))))
3729, 14, 36mp2an 690 . . . . . . . 8 (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))
3826, 28, 37mpbir2an 709 . . . . . . 7 ∅ LIndF (𝑅 freeLMod ∅)
3938a1i 11 . . . . . 6 (𝑅 ∈ Field → ∅ LIndF (𝑅 freeLMod ∅))
4022, 392thd 267 . . . . 5 (𝑅 ∈ Field → (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
41 fvoveq1 7173 . . . . . . . 8 (𝐼 = ∅ → (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)))
42 eleq12 2902 . . . . . . . 8 ((𝑀 = ∅ ∧ (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
4341, 42sylan2 594 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
44 cureq 34862 . . . . . . . . 9 (𝑀 = ∅ → curry 𝑀 = curry ∅)
45 df-cur 7927 . . . . . . . . . 10 curry ∅ = (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
4624dmeqi 5768 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
4746, 24eqtri 2844 . . . . . . . . . . 11 dom dom ∅ = ∅
48 mpteq1 5147 . . . . . . . . . . 11 (dom dom ∅ = ∅ → (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}))
4947, 48ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
50 mpt0 6485 . . . . . . . . . 10 (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = ∅
5145, 49, 503eqtri 2848 . . . . . . . . 9 curry ∅ = ∅
5244, 51syl6eq 2872 . . . . . . . 8 (𝑀 = ∅ → curry 𝑀 = ∅)
53 oveq2 7158 . . . . . . . 8 (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅))
5452, 53breqan12d 5075 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
5543, 54bibi12d 348 . . . . . 6 ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))))
5655biimparc 482 . . . . 5 (((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5740, 56sylan 582 . . . 4 ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5857anassrs 470 . . 3 (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
598, 58sylancom 590 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
609simprbi 499 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
61 eqid 2821 . . . . . 6 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
62 eqid 2821 . . . . . 6 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
63 eqid 2821 . . . . . 6 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
64 eqid 2821 . . . . . 6 (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(𝐼 Mat 𝑅))
65 eqid 2821 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
6661, 62, 63, 64, 65matunit 21281 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6760, 66sylan 582 . . . 4 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6867adantr 483 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
69 eqid 2821 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
70 eqid 2821 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
7169, 65, 70drngunit 19501 . . . . . . . . 9 (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7210, 71syl 17 . . . . . . . 8 (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7372adantr 483 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7462, 61, 63, 69mdetcl 21199 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7560, 74sylan 582 . . . . . . . 8 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7675biantrurd 535 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7773, 76bitr4d 284 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7877adantr 483 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7961, 63matrcl 21015 . . . . . . . . . . . 12 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
8079simpld 497 . . . . . . . . . . 11 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
8180pm4.71i 562 . . . . . . . . . 10 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin))
82 xpfi 8783 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
8382anidms 569 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
84 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
8584, 69frlmfibas 20900 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8683, 85sylan2 594 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8761, 84matbas 21016 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8887ancoms 461 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8986, 88eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
9089eleq2d 2898 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
91 fvex 6678 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
92 elmapg 8413 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9391, 83, 92sylancr 589 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9493adantl 484 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9590, 94bitr3d 283 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9695ex 415 . . . . . . . . . . 11 (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))))
9796pm5.32rd 580 . . . . . . . . . 10 (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9881, 97syl5bb 285 . . . . . . . . 9 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9998biimpd 231 . . . . . . . 8 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
10099imdistani 571 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
101 anass 471 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
102100, 101sylibr 236 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin))
103 eldifsn 4713 . . . . . . . 8 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
104 matunitlindflem1 34882 . . . . . . . . 9 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
105104necon1ad 3033 . . . . . . . 8 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
106103, 105sylan2br 596 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
107106anassrs 470 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
108102, 107sylan 582 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
10978, 108sylbid 242 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
110 matunitlindflem2 34883 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
111110ex 415 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
112109, 111impbid 214 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11368, 112bitrd 281 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11459, 113pm2.61dane 3104 1 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3495  cdif 3933  c0 4291  {csn 4561  cop 4567   class class class wbr 5059  {copab 5121  cmpt 5139   × cxp 5548  dom cdm 5550  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  curry ccur 7925  m cmap 8400  Fincfn 8503  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  1rcur 19245  Ringcrg 19291  CRingccrg 19292  Unitcui 19383  DivRingcdr 19496  Fieldcfield 19497  LSpanclspn 19737   freeLMod cfrlm 20884   LIndF clindf 20942   Mat cmat 21010   maDet cmdat 21187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-cur 7927  df-unc 7928  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-reverse 14115  df-s2 14204  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-mri 16853  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-symg 18490  df-pmtr 18564  df-psgn 18613  df-evpm 18614  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lmhm 19788  df-lbs 19841  df-lvec 19869  df-sra 19938  df-rgmod 19939  df-nzr 20025  df-assa 20079  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-dsmm 20870  df-frlm 20885  df-uvc 20921  df-lindf 20944  df-linds 20945  df-mamu 20989  df-mat 21011  df-mdet 21188  df-madu 21237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator