Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindf Structured version   Visualization version   GIF version

Theorem matunitlindf 33946
Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindf ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Proof of Theorem matunitlindf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 6933 . . . . . . . 8 (𝐼 = ∅ → (Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
2 mat0dimbas0 20647 . . . . . . . 8 (𝑅 ∈ Field → (Base‘(∅ Mat 𝑅)) = {∅})
31, 2sylan9eq 2881 . . . . . . 7 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (Base‘(𝐼 Mat 𝑅)) = {∅})
43eleq2d 2892 . . . . . 6 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅}))
5 elsni 4416 . . . . . 6 (𝑀 ∈ {∅} → 𝑀 = ∅)
64, 5syl6bi 245 . . . . 5 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅))
76imdistanda 567 . . . 4 (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅)))
87impcom 398 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅))
9 isfld 19119 . . . . . . . 8 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
109simplbi 493 . . . . . . 7 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
11 drngring 19117 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
12 eqid 2825 . . . . . . . . 9 (∅ Mat 𝑅) = (∅ Mat 𝑅)
1312mat0dimid 20649 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅)
14 0fin 8463 . . . . . . . . . 10 ∅ ∈ Fin
1512matring 20623 . . . . . . . . . 10 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ Mat 𝑅) ∈ Ring)
1614, 15mpan 681 . . . . . . . . 9 (𝑅 ∈ Ring → (∅ Mat 𝑅) ∈ Ring)
17 eqid 2825 . . . . . . . . . 10 (Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))
18 eqid 2825 . . . . . . . . . 10 (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅))
1917, 181unit 19019 . . . . . . . . 9 ((∅ Mat 𝑅) ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2016, 19syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2113, 20eqeltrrd 2907 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
2210, 11, 213syl 18 . . . . . 6 (𝑅 ∈ Field → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
23 f0 6327 . . . . . . . . 9 ∅:∅⟶(Base‘(𝑅 freeLMod ∅))
24 dm0 5575 . . . . . . . . . 10 dom ∅ = ∅
2524feq2i 6274 . . . . . . . . 9 (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔ ∅:∅⟶(Base‘(𝑅 freeLMod ∅)))
2623, 25mpbir 223 . . . . . . . 8 ∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅))
27 rzal 4297 . . . . . . . . 9 (dom ∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))
2824, 27ax-mp 5 . . . . . . . 8 𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))
29 ovex 6942 . . . . . . . . 9 (𝑅 freeLMod ∅) ∈ V
30 eqid 2825 . . . . . . . . . 10 (Base‘(𝑅 freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅))
31 eqid 2825 . . . . . . . . . 10 ( ·𝑠 ‘(𝑅 freeLMod ∅)) = ( ·𝑠 ‘(𝑅 freeLMod ∅))
32 eqid 2825 . . . . . . . . . 10 (LSpan‘(𝑅 freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅))
33 eqid 2825 . . . . . . . . . 10 (Scalar‘(𝑅 freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅))
34 eqid 2825 . . . . . . . . . 10 (Base‘(Scalar‘(𝑅 freeLMod ∅))) = (Base‘(Scalar‘(𝑅 freeLMod ∅)))
35 eqid 2825 . . . . . . . . . 10 (0g‘(Scalar‘(𝑅 freeLMod ∅))) = (0g‘(Scalar‘(𝑅 freeLMod ∅)))
3630, 31, 32, 33, 34, 35islindf 20525 . . . . . . . . 9 (((𝑅 freeLMod ∅) ∈ V ∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))))
3729, 14, 36mp2an 683 . . . . . . . 8 (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))
3826, 28, 37mpbir2an 702 . . . . . . 7 ∅ LIndF (𝑅 freeLMod ∅)
3938a1i 11 . . . . . 6 (𝑅 ∈ Field → ∅ LIndF (𝑅 freeLMod ∅))
4022, 392thd 257 . . . . 5 (𝑅 ∈ Field → (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
41 fvoveq1 6933 . . . . . . . 8 (𝐼 = ∅ → (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)))
42 eleq12 2896 . . . . . . . 8 ((𝑀 = ∅ ∧ (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
4341, 42sylan2 586 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
44 cureq 33923 . . . . . . . . 9 (𝑀 = ∅ → curry 𝑀 = curry ∅)
45 df-cur 7663 . . . . . . . . . 10 curry ∅ = (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
4624dmeqi 5561 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
4746, 24eqtri 2849 . . . . . . . . . . 11 dom dom ∅ = ∅
48 mpteq1 4962 . . . . . . . . . . 11 (dom dom ∅ = ∅ → (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}))
4947, 48ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
50 mpt0 6258 . . . . . . . . . 10 (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = ∅
5145, 49, 503eqtri 2853 . . . . . . . . 9 curry ∅ = ∅
5244, 51syl6eq 2877 . . . . . . . 8 (𝑀 = ∅ → curry 𝑀 = ∅)
53 oveq2 6918 . . . . . . . 8 (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅))
5452, 53breqan12d 4891 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
5543, 54bibi12d 337 . . . . . 6 ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))))
5655biimparc 473 . . . . 5 (((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5740, 56sylan 575 . . . 4 ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5857anassrs 461 . . 3 (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
598, 58sylancom 582 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
609simprbi 492 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
61 eqid 2825 . . . . . 6 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
62 eqid 2825 . . . . . 6 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
63 eqid 2825 . . . . . 6 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
64 eqid 2825 . . . . . 6 (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(𝐼 Mat 𝑅))
65 eqid 2825 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
6661, 62, 63, 64, 65matunit 20860 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6760, 66sylan 575 . . . 4 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6867adantr 474 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
69 eqid 2825 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
70 eqid 2825 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
7169, 65, 70drngunit 19115 . . . . . . . . 9 (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7210, 71syl 17 . . . . . . . 8 (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7372adantr 474 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7462, 61, 63, 69mdetcl 20777 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7560, 74sylan 575 . . . . . . . 8 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7675biantrurd 528 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7773, 76bitr4d 274 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7877adantr 474 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7961, 63matrcl 20592 . . . . . . . . . . . 12 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
8079simpld 490 . . . . . . . . . . 11 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
8180pm4.71i 555 . . . . . . . . . 10 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin))
82 xpfi 8506 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
8382anidms 562 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
84 eqid 2825 . . . . . . . . . . . . . . . . 17 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
8584, 69frlmfibas 20475 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8683, 85sylan2 586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8761, 84matbas 20593 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8887ancoms 452 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8986, 88eqtrd 2861 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
9089eleq2d 2892 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
91 fvex 6450 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
92 elmapg 8140 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9391, 83, 92sylancr 581 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9493adantl 475 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9590, 94bitr3d 273 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9695ex 403 . . . . . . . . . . 11 (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))))
9796pm5.32rd 573 . . . . . . . . . 10 (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9881, 97syl5bb 275 . . . . . . . . 9 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9998biimpd 221 . . . . . . . 8 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
10099imdistani 564 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
101 anass 462 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
102100, 101sylibr 226 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin))
103 eldifsn 4538 . . . . . . . 8 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
104 matunitlindflem1 33944 . . . . . . . . 9 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
105104necon1ad 3016 . . . . . . . 8 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
106103, 105sylan2br 588 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
107106anassrs 461 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
108102, 107sylan 575 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
10978, 108sylbid 232 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
110 matunitlindflem2 33945 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
111110ex 403 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
112109, 111impbid 204 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11368, 112bitrd 271 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11459, 113pm2.61dane 3086 1 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  wral 3117  Vcvv 3414  cdif 3795  c0 4146  {csn 4399  cop 4405   class class class wbr 4875  {copab 4937  cmpt 4954   × cxp 5344  dom cdm 5346  cima 5349  wf 6123  cfv 6127  (class class class)co 6910  curry ccur 7661  𝑚 cmap 8127  Fincfn 8228  Basecbs 16229  Scalarcsca 16315   ·𝑠 cvsca 16316  0gc0g 16460  1rcur 18862  Ringcrg 18908  CRingccrg 18909  Unitcui 19000  DivRingcdr 19110  Fieldcfield 19111  LSpanclspn 19337   freeLMod cfrlm 20460   LIndF clindf 20517   Mat cmat 20587   maDet cmdat 20765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-xor 1638  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-cur 7663  df-unc 7664  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-xnn0 11698  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-word 13582  df-lsw 13630  df-concat 13638  df-s1 13663  df-substr 13708  df-pfx 13757  df-splice 13864  df-reverse 13882  df-s2 13976  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-gsum 16463  df-prds 16468  df-pws 16470  df-mre 16606  df-mrc 16607  df-mri 16608  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mulg 17902  df-subg 17949  df-ghm 18016  df-gim 18059  df-cntz 18107  df-oppg 18133  df-symg 18155  df-pmtr 18219  df-psgn 18268  df-evpm 18269  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-srg 18867  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lmhm 19388  df-lbs 19441  df-lvec 19469  df-sra 19540  df-rgmod 19541  df-nzr 19626  df-assa 19680  df-cnfld 20114  df-zring 20186  df-zrh 20219  df-dsmm 20446  df-frlm 20461  df-uvc 20496  df-lindf 20519  df-linds 20520  df-mamu 20564  df-mat 20588  df-mdet 20766  df-madu 20815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator