Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindf Structured version   Visualization version   GIF version

Theorem matunitlindf 37647
Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindf ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Proof of Theorem matunitlindf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7433 . . . . . . . 8 (𝐼 = ∅ → (Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
2 mat0dimbas0 22409 . . . . . . . 8 (𝑅 ∈ Field → (Base‘(∅ Mat 𝑅)) = {∅})
31, 2sylan9eq 2791 . . . . . . 7 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (Base‘(𝐼 Mat 𝑅)) = {∅})
43eleq2d 2821 . . . . . 6 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅}))
5 elsni 4623 . . . . . 6 (𝑀 ∈ {∅} → 𝑀 = ∅)
64, 5biimtrdi 253 . . . . 5 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅))
76imdistanda 571 . . . 4 (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅)))
87impcom 407 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅))
9 isfld 20705 . . . . . . . 8 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
109simplbi 497 . . . . . . 7 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
11 drngring 20701 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
12 eqid 2736 . . . . . . . . 9 (∅ Mat 𝑅) = (∅ Mat 𝑅)
1312mat0dimid 22411 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅)
14 0fi 9061 . . . . . . . . . 10 ∅ ∈ Fin
1512matring 22386 . . . . . . . . . 10 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ Mat 𝑅) ∈ Ring)
1614, 15mpan 690 . . . . . . . . 9 (𝑅 ∈ Ring → (∅ Mat 𝑅) ∈ Ring)
17 eqid 2736 . . . . . . . . . 10 (Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))
18 eqid 2736 . . . . . . . . . 10 (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅))
1917, 181unit 20339 . . . . . . . . 9 ((∅ Mat 𝑅) ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2016, 19syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2113, 20eqeltrrd 2836 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
2210, 11, 213syl 18 . . . . . 6 (𝑅 ∈ Field → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
23 f0 6764 . . . . . . . . 9 ∅:∅⟶(Base‘(𝑅 freeLMod ∅))
24 dm0 5905 . . . . . . . . . 10 dom ∅ = ∅
2524feq2i 6703 . . . . . . . . 9 (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔ ∅:∅⟶(Base‘(𝑅 freeLMod ∅)))
2623, 25mpbir 231 . . . . . . . 8 ∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅))
27 rzal 4489 . . . . . . . . 9 (dom ∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))
2824, 27ax-mp 5 . . . . . . . 8 𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))
29 ovex 7443 . . . . . . . . 9 (𝑅 freeLMod ∅) ∈ V
30 eqid 2736 . . . . . . . . . 10 (Base‘(𝑅 freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅))
31 eqid 2736 . . . . . . . . . 10 ( ·𝑠 ‘(𝑅 freeLMod ∅)) = ( ·𝑠 ‘(𝑅 freeLMod ∅))
32 eqid 2736 . . . . . . . . . 10 (LSpan‘(𝑅 freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅))
33 eqid 2736 . . . . . . . . . 10 (Scalar‘(𝑅 freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅))
34 eqid 2736 . . . . . . . . . 10 (Base‘(Scalar‘(𝑅 freeLMod ∅))) = (Base‘(Scalar‘(𝑅 freeLMod ∅)))
35 eqid 2736 . . . . . . . . . 10 (0g‘(Scalar‘(𝑅 freeLMod ∅))) = (0g‘(Scalar‘(𝑅 freeLMod ∅)))
3630, 31, 32, 33, 34, 35islindf 21777 . . . . . . . . 9 (((𝑅 freeLMod ∅) ∈ V ∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))))
3729, 14, 36mp2an 692 . . . . . . . 8 (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))
3826, 28, 37mpbir2an 711 . . . . . . 7 ∅ LIndF (𝑅 freeLMod ∅)
3938a1i 11 . . . . . 6 (𝑅 ∈ Field → ∅ LIndF (𝑅 freeLMod ∅))
4022, 392thd 265 . . . . 5 (𝑅 ∈ Field → (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
41 fvoveq1 7433 . . . . . . . 8 (𝐼 = ∅ → (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)))
42 eleq12 2825 . . . . . . . 8 ((𝑀 = ∅ ∧ (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
4341, 42sylan2 593 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
44 cureq 37625 . . . . . . . . 9 (𝑀 = ∅ → curry 𝑀 = curry ∅)
45 df-cur 8271 . . . . . . . . . 10 curry ∅ = (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
4624dmeqi 5889 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
4746, 24eqtri 2759 . . . . . . . . . . 11 dom dom ∅ = ∅
48 mpteq1 5214 . . . . . . . . . . 11 (dom dom ∅ = ∅ → (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}))
4947, 48ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
50 mpt0 6685 . . . . . . . . . 10 (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = ∅
5145, 49, 503eqtri 2763 . . . . . . . . 9 curry ∅ = ∅
5244, 51eqtrdi 2787 . . . . . . . 8 (𝑀 = ∅ → curry 𝑀 = ∅)
53 oveq2 7418 . . . . . . . 8 (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅))
5452, 53breqan12d 5140 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
5543, 54bibi12d 345 . . . . . 6 ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))))
5655biimparc 479 . . . . 5 (((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5740, 56sylan 580 . . . 4 ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5857anassrs 467 . . 3 (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
598, 58sylancom 588 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
609simprbi 496 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
61 eqid 2736 . . . . . 6 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
62 eqid 2736 . . . . . 6 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
63 eqid 2736 . . . . . 6 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
64 eqid 2736 . . . . . 6 (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(𝐼 Mat 𝑅))
65 eqid 2736 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
6661, 62, 63, 64, 65matunit 22621 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6760, 66sylan 580 . . . 4 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6867adantr 480 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
69 eqid 2736 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
70 eqid 2736 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
7169, 65, 70drngunit 20699 . . . . . . . . 9 (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7210, 71syl 17 . . . . . . . 8 (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7372adantr 480 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7462, 61, 63, 69mdetcl 22539 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7560, 74sylan 580 . . . . . . . 8 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7675biantrurd 532 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7773, 76bitr4d 282 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7877adantr 480 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7961, 63matrcl 22355 . . . . . . . . . . . 12 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
8079simpld 494 . . . . . . . . . . 11 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
8180pm4.71i 559 . . . . . . . . . 10 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin))
82 xpfi 9335 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
8382anidms 566 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
84 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
8584, 69frlmfibas 21727 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8683, 85sylan2 593 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8761, 84matbas 22356 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8887ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8986, 88eqtrd 2771 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
9089eleq2d 2821 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
91 fvex 6894 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
92 elmapg 8858 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9391, 83, 92sylancr 587 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9493adantl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9590, 94bitr3d 281 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9695ex 412 . . . . . . . . . . 11 (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))))
9796pm5.32rd 578 . . . . . . . . . 10 (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9881, 97bitrid 283 . . . . . . . . 9 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9998biimpd 229 . . . . . . . 8 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
10099imdistani 568 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
101 anass 468 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
102100, 101sylibr 234 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin))
103 eldifsn 4767 . . . . . . . 8 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
104 matunitlindflem1 37645 . . . . . . . . 9 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
105104necon1ad 2950 . . . . . . . 8 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
106103, 105sylan2br 595 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
107106anassrs 467 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
108102, 107sylan 580 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
10978, 108sylbid 240 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
110 matunitlindflem2 37646 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
111110ex 412 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
112109, 111impbid 212 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11368, 112bitrd 279 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11459, 113pm2.61dane 3020 1 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  cdif 3928  c0 4313  {csn 4606  cop 4612   class class class wbr 5124  {copab 5186  cmpt 5206   × cxp 5657  dom cdm 5659  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  curry ccur 8269  m cmap 8845  Fincfn 8964  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  1rcur 20146  Ringcrg 20198  CRingccrg 20199  Unitcui 20320  DivRingcdr 20694  Fieldcfield 20695  LSpanclspn 20933   freeLMod cfrlm 21711   LIndF clindf 21769   Mat cmat 22350   maDet cmdat 22527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-cur 8271  df-unc 8272  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-reverse 14782  df-s2 14872  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-symg 19356  df-pmtr 19428  df-psgn 19477  df-evpm 19478  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-drng 20696  df-field 20697  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-assa 21818  df-mamu 22334  df-mat 22351  df-mdet 22528  df-madu 22577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator