Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindf Structured version   Visualization version   GIF version

Theorem matunitlindf 34760
Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindf ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Proof of Theorem matunitlindf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7174 . . . . . . . 8 (𝐼 = ∅ → (Base‘(𝐼 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
2 mat0dimbas0 20994 . . . . . . . 8 (𝑅 ∈ Field → (Base‘(∅ Mat 𝑅)) = {∅})
31, 2sylan9eq 2880 . . . . . . 7 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (Base‘(𝐼 Mat 𝑅)) = {∅})
43eleq2d 2902 . . . . . 6 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀 ∈ {∅}))
5 elsni 4580 . . . . . 6 (𝑀 ∈ {∅} → 𝑀 = ∅)
64, 5syl6bi 254 . . . . 5 ((𝐼 = ∅ ∧ 𝑅 ∈ Field) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝑀 = ∅))
76imdistanda 572 . . . 4 (𝐼 = ∅ → ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ 𝑀 = ∅)))
87impcom 408 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑅 ∈ Field ∧ 𝑀 = ∅))
9 isfld 19434 . . . . . . . 8 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
109simplbi 498 . . . . . . 7 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
11 drngring 19432 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
12 eqid 2825 . . . . . . . . 9 (∅ Mat 𝑅) = (∅ Mat 𝑅)
1312mat0dimid 20996 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅)
14 0fin 8738 . . . . . . . . . 10 ∅ ∈ Fin
1512matring 20971 . . . . . . . . . 10 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ Mat 𝑅) ∈ Ring)
1614, 15mpan 686 . . . . . . . . 9 (𝑅 ∈ Ring → (∅ Mat 𝑅) ∈ Ring)
17 eqid 2825 . . . . . . . . . 10 (Unit‘(∅ Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))
18 eqid 2825 . . . . . . . . . 10 (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅))
1917, 181unit 19331 . . . . . . . . 9 ((∅ Mat 𝑅) ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2016, 19syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) ∈ (Unit‘(∅ Mat 𝑅)))
2113, 20eqeltrrd 2918 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
2210, 11, 213syl 18 . . . . . 6 (𝑅 ∈ Field → ∅ ∈ (Unit‘(∅ Mat 𝑅)))
23 f0 6556 . . . . . . . . 9 ∅:∅⟶(Base‘(𝑅 freeLMod ∅))
24 dm0 5788 . . . . . . . . . 10 dom ∅ = ∅
2524feq2i 6502 . . . . . . . . 9 (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ↔ ∅:∅⟶(Base‘(𝑅 freeLMod ∅)))
2623, 25mpbir 232 . . . . . . . 8 ∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅))
27 rzal 4455 . . . . . . . . 9 (dom ∅ = ∅ → ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))
2824, 27ax-mp 5 . . . . . . . 8 𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))
29 ovex 7184 . . . . . . . . 9 (𝑅 freeLMod ∅) ∈ V
30 eqid 2825 . . . . . . . . . 10 (Base‘(𝑅 freeLMod ∅)) = (Base‘(𝑅 freeLMod ∅))
31 eqid 2825 . . . . . . . . . 10 ( ·𝑠 ‘(𝑅 freeLMod ∅)) = ( ·𝑠 ‘(𝑅 freeLMod ∅))
32 eqid 2825 . . . . . . . . . 10 (LSpan‘(𝑅 freeLMod ∅)) = (LSpan‘(𝑅 freeLMod ∅))
33 eqid 2825 . . . . . . . . . 10 (Scalar‘(𝑅 freeLMod ∅)) = (Scalar‘(𝑅 freeLMod ∅))
34 eqid 2825 . . . . . . . . . 10 (Base‘(Scalar‘(𝑅 freeLMod ∅))) = (Base‘(Scalar‘(𝑅 freeLMod ∅)))
35 eqid 2825 . . . . . . . . . 10 (0g‘(Scalar‘(𝑅 freeLMod ∅))) = (0g‘(Scalar‘(𝑅 freeLMod ∅)))
3630, 31, 32, 33, 34, 35islindf 20875 . . . . . . . . 9 (((𝑅 freeLMod ∅) ∈ V ∧ ∅ ∈ Fin) → (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥}))))))
3729, 14, 36mp2an 688 . . . . . . . 8 (∅ LIndF (𝑅 freeLMod ∅) ↔ (∅:dom ∅⟶(Base‘(𝑅 freeLMod ∅)) ∧ ∀𝑥 ∈ dom ∅∀𝑦 ∈ ((Base‘(Scalar‘(𝑅 freeLMod ∅))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod ∅)))}) ¬ (𝑦( ·𝑠 ‘(𝑅 freeLMod ∅))(∅‘𝑥)) ∈ ((LSpan‘(𝑅 freeLMod ∅))‘(∅ “ (dom ∅ ∖ {𝑥})))))
3826, 28, 37mpbir2an 707 . . . . . . 7 ∅ LIndF (𝑅 freeLMod ∅)
3938a1i 11 . . . . . 6 (𝑅 ∈ Field → ∅ LIndF (𝑅 freeLMod ∅))
4022, 392thd 266 . . . . 5 (𝑅 ∈ Field → (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
41 fvoveq1 7174 . . . . . . . 8 (𝐼 = ∅ → (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅)))
42 eleq12 2906 . . . . . . . 8 ((𝑀 = ∅ ∧ (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(∅ Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
4341, 42sylan2 592 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ∅ ∈ (Unit‘(∅ Mat 𝑅))))
44 cureq 34738 . . . . . . . . 9 (𝑀 = ∅ → curry 𝑀 = curry ∅)
45 df-cur 7927 . . . . . . . . . 10 curry ∅ = (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
4624dmeqi 5771 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
4746, 24eqtri 2848 . . . . . . . . . . 11 dom dom ∅ = ∅
48 mpteq1 5150 . . . . . . . . . . 11 (dom dom ∅ = ∅ → (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}))
4947, 48ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom dom ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧})
50 mpt0 6486 . . . . . . . . . 10 (𝑥 ∈ ∅ ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩∅𝑧}) = ∅
5145, 49, 503eqtri 2852 . . . . . . . . 9 curry ∅ = ∅
5244, 51syl6eq 2876 . . . . . . . 8 (𝑀 = ∅ → curry 𝑀 = ∅)
53 oveq2 7159 . . . . . . . 8 (𝐼 = ∅ → (𝑅 freeLMod 𝐼) = (𝑅 freeLMod ∅))
5452, 53breqan12d 5078 . . . . . . 7 ((𝑀 = ∅ ∧ 𝐼 = ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∅ LIndF (𝑅 freeLMod ∅)))
5543, 54bibi12d 347 . . . . . 6 ((𝑀 = ∅ ∧ 𝐼 = ∅) → ((𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ↔ (∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅))))
5655biimparc 480 . . . . 5 (((∅ ∈ (Unit‘(∅ Mat 𝑅)) ↔ ∅ LIndF (𝑅 freeLMod ∅)) ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5740, 56sylan 580 . . . 4 ((𝑅 ∈ Field ∧ (𝑀 = ∅ ∧ 𝐼 = ∅)) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
5857anassrs 468 . . 3 (((𝑅 ∈ Field ∧ 𝑀 = ∅) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
598, 58sylancom 588 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 = ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
609simprbi 497 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
61 eqid 2825 . . . . . 6 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
62 eqid 2825 . . . . . 6 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
63 eqid 2825 . . . . . 6 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
64 eqid 2825 . . . . . 6 (Unit‘(𝐼 Mat 𝑅)) = (Unit‘(𝐼 Mat 𝑅))
65 eqid 2825 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
6661, 62, 63, 64, 65matunit 21206 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6760, 66sylan 580 . . . 4 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
6867adantr 481 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
69 eqid 2825 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
70 eqid 2825 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
7169, 65, 70drngunit 19430 . . . . . . . . 9 (𝑅 ∈ DivRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7210, 71syl 17 . . . . . . . 8 (𝑅 ∈ Field → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7372adantr 481 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7462, 61, 63, 69mdetcl 21124 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7560, 74sylan 580 . . . . . . . 8 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
7675biantrurd 533 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) ↔ (((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅))))
7773, 76bitr4d 283 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7877adantr 481 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅)))
7961, 63matrcl 20940 . . . . . . . . . . . 12 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
8079simpld 495 . . . . . . . . . . 11 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
8180pm4.71i 560 . . . . . . . . . 10 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin))
82 xpfi 8781 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
8382anidms 567 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
84 eqid 2825 . . . . . . . . . . . . . . . . 17 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
8584, 69frlmfibas 20825 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8683, 85sylan2 592 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
8761, 84matbas 20941 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8887ancoms 459 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
8986, 88eqtrd 2860 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
9089eleq2d 2902 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
91 fvex 6679 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
92 elmapg 8412 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9391, 83, 92sylancr 587 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9493adantl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9590, 94bitr3d 282 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
9695ex 413 . . . . . . . . . . 11 (𝑅 ∈ Field → (𝐼 ∈ Fin → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))))
9796pm5.32rd 578 . . . . . . . . . 10 (𝑅 ∈ Field → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9881, 97syl5bb 284 . . . . . . . . 9 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
9998biimpd 230 . . . . . . . 8 (𝑅 ∈ Field → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
10099imdistani 569 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
101 anass 469 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ↔ (𝑅 ∈ Field ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ Fin)))
102100, 101sylibr 235 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin))
103 eldifsn 4717 . . . . . . . 8 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
104 matunitlindflem1 34758 . . . . . . . . 9 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
105104necon1ad 3037 . . . . . . . 8 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
106103, 105sylan2br 594 . . . . . . 7 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅)) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
107106anassrs 468 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
108102, 107sylan 580 . . . . 5 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ≠ (0g𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
10978, 108sylbid 241 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) → curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
110 matunitlindflem2 34759 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
111110ex 413 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
112109, 111impbid 213 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11368, 112bitrd 280 . 2 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
11459, 113pm2.61dane 3108 1 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142  Vcvv 3499  cdif 3936  c0 4294  {csn 4563  cop 4569   class class class wbr 5062  {copab 5124  cmpt 5142   × cxp 5551  dom cdm 5553  cima 5556  wf 6347  cfv 6351  (class class class)co 7151  curry ccur 7925  m cmap 8399  Fincfn 8501  Basecbs 16476  Scalarcsca 16561   ·𝑠 cvsca 16562  0gc0g 16706  1rcur 19174  Ringcrg 19220  CRingccrg 19221  Unitcui 19312  DivRingcdr 19425  Fieldcfield 19426  LSpanclspn 19666   freeLMod cfrlm 20809   LIndF clindf 20867   Mat cmat 20935   maDet cmdat 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-xor 1498  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-cur 7927  df-unc 7928  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-word 13855  df-lsw 13908  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-splice 14105  df-reverse 14114  df-s2 14203  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-0g 16708  df-gsum 16709  df-prds 16714  df-pws 16716  df-mre 16850  df-mrc 16851  df-mri 16852  df-acs 16853  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-mhm 17947  df-submnd 17948  df-grp 18039  df-minusg 18040  df-sbg 18041  df-mulg 18158  df-subg 18209  df-ghm 18289  df-gim 18332  df-cntz 18380  df-oppg 18407  df-symg 18429  df-pmtr 18493  df-psgn 18542  df-evpm 18543  df-cmn 18831  df-abl 18832  df-mgp 19163  df-ur 19175  df-srg 19179  df-ring 19222  df-cring 19223  df-oppr 19296  df-dvdsr 19314  df-unit 19315  df-invr 19345  df-dvr 19356  df-rnghom 19390  df-drng 19427  df-field 19428  df-subrg 19456  df-lmod 19559  df-lss 19627  df-lsp 19667  df-lmhm 19717  df-lbs 19770  df-lvec 19798  df-sra 19867  df-rgmod 19868  df-nzr 19953  df-assa 20007  df-cnfld 20465  df-zring 20537  df-zrh 20570  df-dsmm 20795  df-frlm 20810  df-uvc 20846  df-lindf 20869  df-linds 20870  df-mamu 20914  df-mat 20936  df-mdet 21113  df-madu 21162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator