Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpocurryd Structured version   Visualization version   GIF version

Theorem mpocurryd 7936
 Description: The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpocurryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpocurryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpocurryd.n (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
mpocurryd (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpocurryd
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cur 7934 . 2 curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
2 mpocurryd.c . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpocurryd.f . . . . . . . 8 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
43dmmpoga 7766 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐶𝑉 → dom 𝐹 = (𝑋 × 𝑌))
52, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (𝑋 × 𝑌))
65dmeqd 5744 . . . . 5 (𝜑 → dom dom 𝐹 = dom (𝑋 × 𝑌))
7 mpocurryd.n . . . . . 6 (𝜑𝑌 ≠ ∅)
8 dmxp 5769 . . . . . 6 (𝑌 ≠ ∅ → dom (𝑋 × 𝑌) = 𝑋)
97, 8syl 17 . . . . 5 (𝜑 → dom (𝑋 × 𝑌) = 𝑋)
106, 9eqtrd 2833 . . . 4 (𝜑 → dom dom 𝐹 = 𝑋)
1110mpteq1d 5123 . . 3 (𝜑 → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}))
12 df-mpt 5115 . . . . 5 (𝑦𝑌𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝐶)}
133mpofun 7265 . . . . . . . 8 Fun 𝐹
14 funbrfv2b 6708 . . . . . . . 8 (Fun 𝐹 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
1513, 14mp1i 13 . . . . . . 7 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
165adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → dom 𝐹 = (𝑋 × 𝑌))
1716eleq2d 2875 . . . . . . . . 9 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)))
18 opelxp 5559 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑥𝑋𝑦𝑌))
1917, 18syl6bb 290 . . . . . . . 8 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ (𝑥𝑋𝑦𝑌)))
2019anbi1d 632 . . . . . . 7 ((𝜑𝑥𝑋) → ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
21 an21 643 . . . . . . . 8 (((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝑌 ∧ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
22 ibar 532 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2322bicomd 226 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
2423adantl 485 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
2524adantr 484 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
26 df-ov 7148 . . . . . . . . . . . . 13 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
27 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑎𝐶
28 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑏𝐶
29 nfcv 2955 . . . . . . . . . . . . . . . . . 18 𝑥𝑏
30 nfcsb1v 3854 . . . . . . . . . . . . . . . . . 18 𝑥𝑎 / 𝑥𝐶
3129, 30nfcsbw 3856 . . . . . . . . . . . . . . . . 17 𝑥𝑏 / 𝑦𝑎 / 𝑥𝐶
32 nfcsb1v 3854 . . . . . . . . . . . . . . . . 17 𝑦𝑏 / 𝑦𝑎 / 𝑥𝐶
33 csbeq1a 3844 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
34 csbeq1a 3844 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏𝑎 / 𝑥𝐶 = 𝑏 / 𝑦𝑎 / 𝑥𝐶)
3533, 34sylan9eq 2853 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝐶 = 𝑏 / 𝑦𝑎 / 𝑥𝐶)
3627, 28, 31, 32, 35cbvmpo 7237 . . . . . . . . . . . . . . . 16 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶)
373, 36eqtri 2821 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶)
3837a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐹 = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶))
3933eqcomd 2804 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝑎 / 𝑥𝐶 = 𝐶)
4039equcoms 2027 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥𝑎 / 𝑥𝐶 = 𝐶)
4140csbeq2dv 3837 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝑏 / 𝑦𝐶)
42 csbeq1a 3844 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏𝐶 = 𝑏 / 𝑦𝐶)
4342eqcomd 2804 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏𝑏 / 𝑦𝐶 = 𝐶)
4443equcoms 2027 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦𝑏 / 𝑦𝐶 = 𝐶)
4541, 44sylan9eq 2853 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝐶)
4645adantl 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑦𝑌) ∧ (𝑎 = 𝑥𝑏 = 𝑦)) → 𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝐶)
47 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
4847adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
49 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
50 rsp2 3177 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋𝑦𝑌 𝐶𝑉 → ((𝑥𝑋𝑦𝑌) → 𝐶𝑉))
512, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐶𝑉))
5251impl 459 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐶𝑉)
5338, 46, 48, 49, 52ovmpod 7292 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑥𝐹𝑦) = 𝐶)
5426, 53syl5eqr 2847 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐹‘⟨𝑥, 𝑦⟩) = 𝐶)
5554eqeq1d 2800 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝐶 = 𝑧))
56 eqcom 2805 . . . . . . . . . . 11 (𝐶 = 𝑧𝑧 = 𝐶)
5755, 56syl6bb 290 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝑧 = 𝐶))
5825, 57bitrd 282 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ 𝑧 = 𝐶))
5958pm5.32da 582 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑦𝑌 ∧ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)) ↔ (𝑦𝑌𝑧 = 𝐶)))
6021, 59syl5bb 286 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝑌𝑧 = 𝐶)))
6115, 20, 603bitrrd 309 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝑧 = 𝐶) ↔ ⟨𝑥, 𝑦𝐹𝑧))
6261opabbidv 5100 . . . . 5 ((𝜑𝑥𝑋) → {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝐶)} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
6312, 62syl5req 2846 . . . 4 ((𝜑𝑥𝑋) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = (𝑦𝑌𝐶))
6463mpteq2dva 5129 . . 3 (𝜑 → (𝑥𝑋 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
6511, 64eqtrd 2833 . 2 (𝜑 → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
661, 65syl5eq 2845 1 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ⦋csb 3830  ∅c0 4246  ⟨cop 4534   class class class wbr 5034  {copab 5096   ↦ cmpt 5114   × cxp 5521  dom cdm 5523  Fun wfun 6326  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  curry ccur 7932 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685  df-cur 7934 This theorem is referenced by:  mpocurryvald  7937  curfv  35188
 Copyright terms: Public domain W3C validator