Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curf Structured version   Visualization version   GIF version

Theorem curf 36454
Description: Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curf ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))

Proof of Theorem curf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 5712 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2 ffvelcdm 7080 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
31, 2sylan2 593 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
43anassrs 468 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) ∧ 𝑦𝐵) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
54fmpttd 7111 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
653ad2antl1 1185 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
7 elmapg 8829 . . . . . . 7 ((𝐶𝑊𝐵 ∈ (𝑉 ∖ {∅})) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
87ancoms 459 . . . . . 6 ((𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
983adant1 1130 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
109adantr 481 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
116, 10mpbird 256 . . 3 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵))
1211fmpttd 7111 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵))
13 eldifsni 4792 . . . 4 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
14 df-cur 8248 . . . . . 6 curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
15 fdm 6723 . . . . . . . . . 10 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom 𝐹 = (𝐴 × 𝐵))
1615dmeqd 5903 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom dom 𝐹 = dom (𝐴 × 𝐵))
17 dmxp 5926 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
1816, 17sylan9eq 2792 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → dom dom 𝐹 = 𝐴)
1918mpteq1d 5242 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}))
20 ffun 6717 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → Fun 𝐹)
21 funbrfv2b 6946 . . . . . . . . . . . . . 14 (Fun 𝐹 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2220, 21syl 17 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2315eleq2d 2819 . . . . . . . . . . . . . . 15 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
24 opelxp 5711 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2523, 24bitrdi 286 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ (𝑥𝐴𝑦𝐵)))
2625anbi1d 630 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2722, 26bitrd 278 . . . . . . . . . . . 12 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
28 ibar 529 . . . . . . . . . . . . 13 (𝑥𝐴 → ((𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)))))
29 anass 469 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
30 eqcom 2739 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹‘⟨𝑥, 𝑦⟩) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3130anbi2i 623 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3229, 31bitr3i 276 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3328, 32bitr2di 287 . . . . . . . . . . . 12 (𝑥𝐴 → (((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3427, 33sylan9bb 510 . . . . . . . . . . 11 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (⟨𝑥, 𝑦𝐹𝑧 ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3534opabbidv 5213 . . . . . . . . . 10 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))})
36 df-mpt 5231 . . . . . . . . . 10 (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))}
3735, 36eqtr4di 2790 . . . . . . . . 9 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
3837mpteq2dva 5247 . . . . . . . 8 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
3938adantr 481 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4019, 39eqtrd 2772 . . . . . 6 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4114, 40eqtrid 2784 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → curry 𝐹 = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4241feq1d 6699 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4313, 42sylan2 593 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅})) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
44433adant3 1132 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4512, 44mpbird 256 1 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  cdif 3944  c0 4321  {csn 4627  cop 4633   class class class wbr 5147  {copab 5209  cmpt 5230   × cxp 5673  dom cdm 5675  Fun wfun 6534  wf 6536  cfv 6540  (class class class)co 7405  curry ccur 8246  m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-cur 8248  df-map 8818
This theorem is referenced by:  unccur  36459  matunitlindflem1  36472  matunitlindflem2  36473
  Copyright terms: Public domain W3C validator