Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curf Structured version   Visualization version   GIF version

Theorem curf 37605
Description: Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curf ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))

Proof of Theorem curf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 5722 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2 ffvelcdm 7101 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
31, 2sylan2 593 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
43anassrs 467 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) ∧ 𝑦𝐵) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
54fmpttd 7135 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
653ad2antl1 1186 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
7 elmapg 8879 . . . . . . 7 ((𝐶𝑊𝐵 ∈ (𝑉 ∖ {∅})) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
87ancoms 458 . . . . . 6 ((𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
983adant1 1131 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
109adantr 480 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
116, 10mpbird 257 . . 3 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵))
1211fmpttd 7135 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵))
13 eldifsni 4790 . . . 4 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
14 df-cur 8292 . . . . . 6 curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
15 fdm 6745 . . . . . . . . . 10 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom 𝐹 = (𝐴 × 𝐵))
1615dmeqd 5916 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom dom 𝐹 = dom (𝐴 × 𝐵))
17 dmxp 5939 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
1816, 17sylan9eq 2797 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → dom dom 𝐹 = 𝐴)
1918mpteq1d 5237 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}))
20 ffun 6739 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → Fun 𝐹)
21 funbrfv2b 6966 . . . . . . . . . . . . . 14 (Fun 𝐹 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2220, 21syl 17 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2315eleq2d 2827 . . . . . . . . . . . . . . 15 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
24 opelxp 5721 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2523, 24bitrdi 287 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ (𝑥𝐴𝑦𝐵)))
2625anbi1d 631 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2722, 26bitrd 279 . . . . . . . . . . . 12 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
28 ibar 528 . . . . . . . . . . . . 13 (𝑥𝐴 → ((𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)))))
29 anass 468 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
30 eqcom 2744 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹‘⟨𝑥, 𝑦⟩) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3130anbi2i 623 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3229, 31bitr3i 277 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3328, 32bitr2di 288 . . . . . . . . . . . 12 (𝑥𝐴 → (((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3427, 33sylan9bb 509 . . . . . . . . . . 11 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (⟨𝑥, 𝑦𝐹𝑧 ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3534opabbidv 5209 . . . . . . . . . 10 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))})
36 df-mpt 5226 . . . . . . . . . 10 (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))}
3735, 36eqtr4di 2795 . . . . . . . . 9 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
3837mpteq2dva 5242 . . . . . . . 8 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
3938adantr 480 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4019, 39eqtrd 2777 . . . . . 6 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4114, 40eqtrid 2789 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → curry 𝐹 = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4241feq1d 6720 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4313, 42sylan2 593 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅})) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
44433adant3 1133 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4512, 44mpbird 257 1 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cdif 3948  c0 4333  {csn 4626  cop 4632   class class class wbr 5143  {copab 5205  cmpt 5225   × cxp 5683  dom cdm 5685  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  curry ccur 8290  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-cur 8292  df-map 8868
This theorem is referenced by:  unccur  37610  matunitlindflem1  37623  matunitlindflem2  37624
  Copyright terms: Public domain W3C validator