Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curunc Structured version   Visualization version   GIF version

Theorem curunc 37603
Description: Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curunc ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹)

Proof of Theorem curunc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → 𝐹:𝐴⟶(𝐶m 𝐵))
21feqmptd 6932 . 2 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
3 uncf 37600 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)
43fdmd 6701 . . . . . . 7 (𝐹:𝐴⟶(𝐶m 𝐵) → dom uncurry 𝐹 = (𝐴 × 𝐵))
54dmeqd 5872 . . . . . 6 (𝐹:𝐴⟶(𝐶m 𝐵) → dom dom uncurry 𝐹 = dom (𝐴 × 𝐵))
6 dmxp 5895 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
75, 6sylan9eq 2785 . . . . 5 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → dom dom uncurry 𝐹 = 𝐴)
87eqcomd 2736 . . . 4 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → 𝐴 = dom dom uncurry 𝐹)
9 df-mpt 5192 . . . . . 6 (𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))}
10 ffvelcdm 7056 . . . . . . . 8 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝐶m 𝐵))
11 elmapi 8825 . . . . . . . 8 ((𝐹𝑥) ∈ (𝐶m 𝐵) → (𝐹𝑥):𝐵𝐶)
1210, 11syl 17 . . . . . . 7 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥):𝐵𝐶)
1312feqmptd 6932 . . . . . 6 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦)))
14 ffun 6694 . . . . . . . . . 10 (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 → Fun uncurry 𝐹)
15 funbrfv2b 6921 . . . . . . . . . 10 (Fun uncurry 𝐹 → (⟨𝑥, 𝑦⟩uncurry 𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹 ∧ (uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
163, 14, 153syl 18 . . . . . . . . 9 (𝐹:𝐴⟶(𝐶m 𝐵) → (⟨𝑥, 𝑦⟩uncurry 𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹 ∧ (uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
1716adantr 480 . . . . . . . 8 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩uncurry 𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹 ∧ (uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
184eleq2d 2815 . . . . . . . . . 10 (𝐹:𝐴⟶(𝐶m 𝐵) → (⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
19 opelxp 5677 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2019baib 535 . . . . . . . . . 10 (𝑥𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ 𝑦𝐵))
2118, 20sylan9bb 509 . . . . . . . . 9 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹𝑦𝐵))
22 df-ov 7393 . . . . . . . . . . . . 13 (𝑥uncurry 𝐹𝑦) = (uncurry 𝐹‘⟨𝑥, 𝑦⟩)
23 uncov 37602 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥uncurry 𝐹𝑦) = ((𝐹𝑥)‘𝑦))
2423el2v 3457 . . . . . . . . . . . . 13 (𝑥uncurry 𝐹𝑦) = ((𝐹𝑥)‘𝑦)
2522, 24eqtr3i 2755 . . . . . . . . . . . 12 (uncurry 𝐹‘⟨𝑥, 𝑦⟩) = ((𝐹𝑥)‘𝑦)
2625eqeq1i 2735 . . . . . . . . . . 11 ((uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ((𝐹𝑥)‘𝑦) = 𝑧)
27 eqcom 2737 . . . . . . . . . . 11 (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦))
2826, 27bitri 275 . . . . . . . . . 10 ((uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦))
2928a1i 11 . . . . . . . . 9 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → ((uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦)))
3021, 29anbi12d 632 . . . . . . . 8 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → ((⟨𝑥, 𝑦⟩ ∈ dom uncurry 𝐹 ∧ (uncurry 𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
3117, 30bitrd 279 . . . . . . 7 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩uncurry 𝐹𝑧 ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
3231opabbidv 5176 . . . . . 6 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩uncurry 𝐹𝑧} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))})
339, 13, 323eqtr4a 2791 . . . . 5 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩uncurry 𝐹𝑧})
3433adantlr 715 . . . 4 (((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩uncurry 𝐹𝑧})
358, 34mpteq12dva 5196 . . 3 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥 ∈ dom dom uncurry 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩uncurry 𝐹𝑧}))
36 df-cur 8249 . . 3 curry uncurry 𝐹 = (𝑥 ∈ dom dom uncurry 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦⟩uncurry 𝐹𝑧})
3735, 36eqtr4di 2783 . 2 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = curry uncurry 𝐹)
382, 37eqtr2d 2766 1 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  cop 4598   class class class wbr 5110  {copab 5172  cmpt 5191   × cxp 5639  dom cdm 5641  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  curry ccur 8247  uncurry cunc 8248  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-cur 8249  df-unc 8250  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator