Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvbr2 | Structured version Visualization version GIF version |
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvbr2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvbr 30545 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
2 | iman 401 | . . . . . 6 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵)) | |
3 | anass 468 | . . . . . . 7 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵))) | |
4 | dfpss2 4016 | . . . . . . . 8 ⊢ (𝑥 ⊊ 𝐵 ↔ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵)) | |
5 | 4 | anbi2i 622 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . . . . 6 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
7 | 2, 6 | xchbinx 333 | . . . . 5 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
8 | 7 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥 ∈ Cℋ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
9 | ralnex 3163 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) | |
10 | 8, 9 | bitri 274 | . . 3 ⊢ (∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
11 | 10 | anbi2i 622 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)) ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
12 | 1, 11 | bitr4di 288 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 Cℋ cch 29192 ⋖ℋ ccv 29227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cv 30542 |
This theorem is referenced by: spansncv2 30556 elat2 30603 |
Copyright terms: Public domain | W3C validator |