HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr2 Structured version   Visualization version   GIF version

Theorem cvbr2 30645
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr2
StepHypRef Expression
1 cvbr 30644 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 iman 402 . . . . . 6 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵))
3 anass 469 . . . . . . 7 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
4 dfpss2 4020 . . . . . . . 8 (𝑥𝐵 ↔ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵))
54anbi2i 623 . . . . . . 7 ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
63, 5bitr4i 277 . . . . . 6 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥𝑥𝐵))
72, 6xchbinx 334 . . . . 5 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴𝑥𝑥𝐵))
87ralbii 3092 . . . 4 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥C ¬ (𝐴𝑥𝑥𝐵))
9 ralnex 3167 . . . 4 (∀𝑥C ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
108, 9bitri 274 . . 3 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
1110anbi2i 623 . 2 ((𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
121, 11bitr4di 289 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  wpss 3888   class class class wbr 5074   C cch 29291   ccv 29326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cv 30641
This theorem is referenced by:  spansncv2  30655  elat2  30702
  Copyright terms: Public domain W3C validator