HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr2 Structured version   Visualization version   GIF version

Theorem cvbr2 32265
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr2
StepHypRef Expression
1 cvbr 32264 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 iman 401 . . . . . 6 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵))
3 anass 468 . . . . . . 7 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
4 dfpss2 4037 . . . . . . . 8 (𝑥𝐵 ↔ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵))
54anbi2i 623 . . . . . . 7 ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
63, 5bitr4i 278 . . . . . 6 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥𝑥𝐵))
72, 6xchbinx 334 . . . . 5 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴𝑥𝑥𝐵))
87ralbii 3079 . . . 4 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥C ¬ (𝐴𝑥𝑥𝐵))
9 ralnex 3059 . . . 4 (∀𝑥C ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
108, 9bitri 275 . . 3 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
1110anbi2i 623 . 2 ((𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
121, 11bitr4di 289 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898  wpss 3899   class class class wbr 5093   C cch 30911   ccv 30946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-cv 32261
This theorem is referenced by:  spansncv2  32275  elat2  32322
  Copyright terms: Public domain W3C validator