HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr2 Structured version   Visualization version   GIF version

Theorem cvbr2 30062
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr2
StepHypRef Expression
1 cvbr 30061 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 iman 404 . . . . . 6 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵))
3 anass 471 . . . . . . 7 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
4 dfpss2 4064 . . . . . . . 8 (𝑥𝐵 ↔ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵))
54anbi2i 624 . . . . . . 7 ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
63, 5bitr4i 280 . . . . . 6 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥𝑥𝐵))
72, 6xchbinx 336 . . . . 5 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴𝑥𝑥𝐵))
87ralbii 3167 . . . 4 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥C ¬ (𝐴𝑥𝑥𝐵))
9 ralnex 3238 . . . 4 (∀𝑥C ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
108, 9bitri 277 . . 3 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
1110anbi2i 624 . 2 ((𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
121, 11syl6bbr 291 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  wpss 3939   class class class wbr 5068   C cch 28708   ccv 28743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-cv 30058
This theorem is referenced by:  spansncv2  30072  elat2  30119
  Copyright terms: Public domain W3C validator