![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvbr2 | Structured version Visualization version GIF version |
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvbr2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvbr 31800 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
2 | iman 400 | . . . . . 6 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵)) | |
3 | anass 467 | . . . . . . 7 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵))) | |
4 | dfpss2 4086 | . . . . . . . 8 ⊢ (𝑥 ⊊ 𝐵 ↔ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵)) | |
5 | 4 | anbi2i 621 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . . . . 6 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
7 | 2, 6 | xchbinx 333 | . . . . 5 ⊢ (((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
8 | 7 | ralbii 3091 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥 ∈ Cℋ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
9 | ralnex 3070 | . . . 4 ⊢ (∀𝑥 ∈ Cℋ ¬ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) | |
10 | 8, 9 | bitri 274 | . . 3 ⊢ (∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
11 | 10 | anbi2i 621 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)) ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
12 | 1, 11 | bitr4di 288 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 ⊆ wss 3949 ⊊ wpss 3950 class class class wbr 5149 Cℋ cch 30447 ⋖ℋ ccv 30482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cv 31797 |
This theorem is referenced by: spansncv2 31811 elat2 31858 |
Copyright terms: Public domain | W3C validator |