Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ∈ Cℋ
↔ 𝐴 ∈
Cℋ )) |
2 | 1 | anbi1d 630 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ))) |
3 | | psseq1 4022 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝑧)) |
4 | | psseq1 4022 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝑥)) |
5 | 4 | anbi1d 630 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))) |
6 | 5 | rexbidv 3226 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ Cℋ
(𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))) |
7 | 6 | notbid 318 |
. . . . 5
⊢ (𝑦 = 𝐴 → (¬ ∃𝑥 ∈ Cℋ
(𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))) |
8 | 3, 7 | anbi12d 631 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧)) ↔ (𝐴 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧)))) |
9 | 2, 8 | anbi12d 631 |
. . 3
⊢ (𝑦 = 𝐴 → (((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ (𝑦 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))) ↔ ((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ (𝐴 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))))) |
10 | | eleq1 2826 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑧 ∈ Cℋ
↔ 𝐵 ∈
Cℋ )) |
11 | 10 | anbi2d 629 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ))) |
12 | | psseq2 4023 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝐵)) |
13 | | psseq2 4023 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑥 ⊊ 𝑧 ↔ 𝑥 ⊊ 𝐵)) |
14 | 13 | anbi2d 629 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
15 | 14 | rexbidv 3226 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
16 | 15 | notbid 318 |
. . . . 5
⊢ (𝑧 = 𝐵 → (¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧) ↔ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
17 | 12, 16 | anbi12d 631 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧)) ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) |
18 | 11, 17 | anbi12d 631 |
. . 3
⊢ (𝑧 = 𝐵 → (((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ (𝐴 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧))) ↔ ((𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) ∧ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))))) |
19 | | df-cv 30641 |
. . 3
⊢
⋖ℋ = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ (𝑦 ⊊ 𝑧 ∧ ¬ ∃𝑥 ∈ Cℋ
(𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧)))} |
20 | 9, 18, 19 | brabg 5452 |
. 2
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
⋖ℋ 𝐵
↔ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
∧ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈
Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))))) |
21 | 20 | bianabs 542 |
1
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
⋖ℋ 𝐵
↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈
Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) |