HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Structured version   Visualization version   GIF version

Theorem cvbr 30545
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 629 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 psseq1 4018 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑧𝐴𝑧))
4 psseq1 4018 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
54anbi1d 629 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝑧)))
65rexbidv 3225 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝑧)))
76notbid 317 . . . . 5 (𝑦 = 𝐴 → (¬ ∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))
83, 7anbi12d 630 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)) ↔ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))))
92, 8anbi12d 630 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧))) ↔ ((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))))
10 eleq1 2826 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1110anbi2d 628 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
12 psseq2 4019 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
13 psseq2 4019 . . . . . . . 8 (𝑧 = 𝐵 → (𝑥𝑧𝑥𝐵))
1413anbi2d 628 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝐵)))
1514rexbidv 3225 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1615notbid 317 . . . . 5 (𝑧 = 𝐵 → (¬ ∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1712, 16anbi12d 630 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
1811, 17anbi12d 630 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))) ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
19 df-cv 30542 . . 3 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)))}
209, 18, 19brabg 5445 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
2120bianabs 541 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wpss 3884   class class class wbr 5070   C cch 29192   ccv 29227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cv 30542
This theorem is referenced by:  cvbr2  30546  cvcon3  30547  cvpss  30548  cvnbtwn  30549
  Copyright terms: Public domain W3C validator