Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-disjs Structured version   Visualization version   GIF version

Definition df-disjs 38691
Description: Define the disjoint relations class, i.e., the class of disjoints. We need Disjs for the definition of Parts and Part for the Partition-Equivalence Theorems: this need for Parts as disjoint relations on their domain quotients is the reason why we must define Disjs instead of simply using converse functions (cf. dfdisjALTV 38700).

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38714. Alternate definitions are dfdisjs 38695, ... , dfdisjs5 38699. (Contributed by Peter Mazsa, 17-Jul-2021.)

Assertion
Ref Expression
df-disjs Disjs = ( Disjss ∩ Rels )

Detailed syntax breakdown of Definition df-disjs
StepHypRef Expression
1 cdisjs 38197 . 2 class Disjs
2 cdisjss 38196 . . 3 class Disjss
3 crels 38166 . . 3 class Rels
42, 3cin 3915 . 2 class ( Disjss ∩ Rels )
51, 4wceq 1540 1 wff Disjs = ( Disjss ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfdisjs  38695
  Copyright terms: Public domain W3C validator