Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs5 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfdisjs5 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs2 36820 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | |
2 | cosscnvssid5 36596 | . . 3 ⊢ (( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)) | |
3 | elrelsrelim 36606 | . . . . 5 ⊢ (𝑟 ∈ Rels → Rel 𝑟) | |
4 | 3 | biantrud 532 | . . . 4 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟))) |
5 | 3 | biantrud 532 | . . . 4 ⊢ (𝑟 ∈ Rels → (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))) |
6 | 4, 5 | bibi12d 346 | . . 3 ⊢ (𝑟 ∈ Rels → (( ≀ ◡𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)) ↔ (( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)))) |
7 | 2, 6 | mpbiri 257 | . 2 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅))) |
8 | 1, 7 | rabimbieq 36391 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 I cid 5488 ◡ccnv 5588 dom cdm 5589 Rel wrel 5594 [cec 8496 ≀ ccoss 36333 Rels crels 36335 Disjs cdisjs 36366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-coss 36537 df-rels 36603 df-ssr 36616 df-cnvrefs 36641 df-cnvrefrels 36642 df-disjss 36814 df-disjs 36815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |