Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs5 Structured version   Visualization version   GIF version

Theorem dfdisjs5 38676
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfdisjs5 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Distinct variable group:   𝑢,𝑟,𝑣

Proof of Theorem dfdisjs5
StepHypRef Expression
1 dfdisjs2 38673 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid5 38442 . . 3 (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))
3 elrelsrelim 38452 . . . . 5 (𝑟 ∈ Rels → Rel 𝑟)
43biantrud 531 . . . 4 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟)))
53biantrud 531 . . . 4 (𝑟 ∈ Rels → (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)))
64, 5bibi12d 345 . . 3 (𝑟 ∈ Rels → (( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)) ↔ (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))))
72, 6mpbiri 258 . 2 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)))
81, 7rabimbieq 38215 1 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cin 3925  wss 3926  c0 4308   I cid 5547  ccnv 5653  dom cdm 5654  Rel wrel 5659  [cec 8715  ccoss 38145   Rels crels 38147   Disjs cdisjs 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8719  df-coss 38375  df-rels 38449  df-ssr 38462  df-cnvrefs 38489  df-cnvrefrels 38490  df-disjss 38667  df-disjs 38668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator