| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfdisjs5 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs2 38708 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | |
| 2 | cosscnvssid5 38476 | . . 3 ⊢ (( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)) | |
| 3 | elrelsrelim 38486 | . . . . 5 ⊢ (𝑟 ∈ Rels → Rel 𝑟) | |
| 4 | 3 | biantrud 531 | . . . 4 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟))) |
| 5 | 3 | biantrud 531 | . . . 4 ⊢ (𝑟 ∈ Rels → (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))) |
| 6 | 4, 5 | bibi12d 345 | . . 3 ⊢ (𝑟 ∈ Rels → (( ≀ ◡𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)) ↔ (( ≀ ◡𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)))) |
| 7 | 2, 6 | mpbiri 258 | . 2 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅))) |
| 8 | 1, 7 | rabimbieq 38247 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 I cid 5535 ◡ccnv 5640 dom cdm 5641 Rel wrel 5646 [cec 8672 ≀ ccoss 38176 Rels crels 38178 Disjs cdisjs 38209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-coss 38409 df-rels 38483 df-ssr 38496 df-cnvrefs 38523 df-cnvrefrels 38524 df-disjss 38702 df-disjs 38703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |