Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs5 Structured version   Visualization version   GIF version

Theorem dfdisjs5 38688
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfdisjs5 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Distinct variable group:   𝑢,𝑟,𝑣

Proof of Theorem dfdisjs5
StepHypRef Expression
1 dfdisjs2 38685 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid5 38454 . . 3 (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))
3 elrelsrelim 38464 . . . . 5 (𝑟 ∈ Rels → Rel 𝑟)
43biantrud 531 . . . 4 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟)))
53biantrud 531 . . . 4 (𝑟 ∈ Rels → (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)))
64, 5bibi12d 345 . . 3 (𝑟 ∈ Rels → (( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)) ↔ (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))))
72, 6mpbiri 258 . 2 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)))
81, 7rabimbieq 38227 1 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  {crab 3419  cin 3930  wss 3931  c0 4313   I cid 5557  ccnv 5664  dom cdm 5665  Rel wrel 5670  [cec 8725  ccoss 38157   Rels crels 38159   Disjs cdisjs 38190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-coss 38387  df-rels 38461  df-ssr 38474  df-cnvrefs 38501  df-cnvrefrels 38502  df-disjss 38679  df-disjs 38680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator