Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs5 Structured version   Visualization version   GIF version

Theorem dfdisjs5 38668
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfdisjs5 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Distinct variable group:   𝑢,𝑟,𝑣

Proof of Theorem dfdisjs5
StepHypRef Expression
1 dfdisjs2 38665 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid5 38434 . . 3 (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))
3 elrelsrelim 38444 . . . . 5 (𝑟 ∈ Rels → Rel 𝑟)
43biantrud 531 . . . 4 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ Rel 𝑟)))
53biantrud 531 . . . 4 (𝑟 ∈ Rels → (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟)))
64, 5bibi12d 345 . . 3 (𝑟 ∈ Rels → (( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)) ↔ (( ≀ 𝑟 ⊆ I ∧ Rel 𝑟) ↔ (∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅) ∧ Rel 𝑟))))
72, 6mpbiri 258 . 2 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)))
81, 7rabimbieq 38207 1 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cin 3975  wss 3976  c0 4352   I cid 5592  ccnv 5699  dom cdm 5700  Rel wrel 5705  [cec 8761  ccoss 38135   Rels crels 38137   Disjs cdisjs 38168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-coss 38367  df-rels 38441  df-ssr 38454  df-cnvrefs 38481  df-cnvrefrels 38482  df-disjss 38659  df-disjs 38660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator