Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36815 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV 36816 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
2 | relcnv 6012 | . . . 4 ⊢ Rel ◡𝑅 | |
3 | df-funALTV 36793 | . . . 4 ⊢ ( FunALTV ◡𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel ◡𝑅)) | |
4 | 2, 3 | mpbiran2 707 | . . 3 ⊢ ( FunALTV ◡𝑅 ↔ CnvRefRel ≀ ◡𝑅) |
5 | 4 | anbi1i 624 | . 2 ⊢ (( FunALTV ◡𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
6 | 1, 5 | bitr4i 277 | 1 ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ◡ccnv 5588 Rel wrel 5594 ≀ ccoss 36333 CnvRefRel wcnvrefrel 36342 FunALTV wfunALTV 36364 Disj wdisjALTV 36367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-funALTV 36793 df-disjALTV 36816 |
This theorem is referenced by: disjss 36842 |
Copyright terms: Public domain | W3C validator |