Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjALTV Structured version   Visualization version   GIF version

Theorem dfdisjALTV 38698
Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38689 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
dfdisjALTV ( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))

Proof of Theorem dfdisjALTV
StepHypRef Expression
1 df-disjALTV 38690 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
2 relcnv 6064 . . . 4 Rel 𝑅
3 df-funALTV 38667 . . . 4 ( FunALTV 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
42, 3mpbiran2 710 . . 3 ( FunALTV 𝑅 ↔ CnvRefRel ≀ 𝑅)
54anbi1i 624 . 2 (( FunALTV 𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
61, 5bitr4i 278 1 ( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  ccnv 5630  Rel wrel 5636  ccoss 38162   CnvRefRel wcnvrefrel 38171   FunALTV wfunALTV 38193   Disj wdisjALTV 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-funALTV 38667  df-disjALTV 38690
This theorem is referenced by:  disjss  38716
  Copyright terms: Public domain W3C validator