![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38660 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV 38661 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
2 | relcnv 6134 | . . . 4 ⊢ Rel ◡𝑅 | |
3 | df-funALTV 38638 | . . . 4 ⊢ ( FunALTV ◡𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel ◡𝑅)) | |
4 | 2, 3 | mpbiran2 709 | . . 3 ⊢ ( FunALTV ◡𝑅 ↔ CnvRefRel ≀ ◡𝑅) |
5 | 4 | anbi1i 623 | . 2 ⊢ (( FunALTV ◡𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
6 | 1, 5 | bitr4i 278 | 1 ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ◡ccnv 5699 Rel wrel 5705 ≀ ccoss 38135 CnvRefRel wcnvrefrel 38144 FunALTV wfunALTV 38166 Disj wdisjALTV 38169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-funALTV 38638 df-disjALTV 38661 |
This theorem is referenced by: disjss 38687 |
Copyright terms: Public domain | W3C validator |