| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38703 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38704 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | relcnv 6078 | . . . 4 ⊢ Rel ◡𝑅 | |
| 3 | df-funALTV 38681 | . . . 4 ⊢ ( FunALTV ◡𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel ◡𝑅)) | |
| 4 | 2, 3 | mpbiran2 710 | . . 3 ⊢ ( FunALTV ◡𝑅 ↔ CnvRefRel ≀ ◡𝑅) |
| 5 | 4 | anbi1i 624 | . 2 ⊢ (( FunALTV ◡𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ◡ccnv 5640 Rel wrel 5646 ≀ ccoss 38176 CnvRefRel wcnvrefrel 38185 FunALTV wfunALTV 38207 Disj wdisjALTV 38210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-funALTV 38681 df-disjALTV 38704 |
| This theorem is referenced by: disjss 38730 |
| Copyright terms: Public domain | W3C validator |