![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 37216 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV 37217 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
2 | relcnv 6060 | . . . 4 ⊢ Rel ◡𝑅 | |
3 | df-funALTV 37194 | . . . 4 ⊢ ( FunALTV ◡𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel ◡𝑅)) | |
4 | 2, 3 | mpbiran2 709 | . . 3 ⊢ ( FunALTV ◡𝑅 ↔ CnvRefRel ≀ ◡𝑅) |
5 | 4 | anbi1i 625 | . 2 ⊢ (( FunALTV ◡𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
6 | 1, 5 | bitr4i 278 | 1 ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ◡ccnv 5636 Rel wrel 5642 ≀ ccoss 36684 CnvRefRel wcnvrefrel 36693 FunALTV wfunALTV 36715 Disj wdisjALTV 36718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-in 3921 df-ss 3931 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 df-funALTV 37194 df-disjALTV 37217 |
This theorem is referenced by: disjss 37243 |
Copyright terms: Public domain | W3C validator |