Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjALTV Structured version   Visualization version   GIF version

Theorem dfdisjALTV 38821
Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38812 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
dfdisjALTV ( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))

Proof of Theorem dfdisjALTV
StepHypRef Expression
1 df-disjALTV 38813 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
2 relcnv 6052 . . . 4 Rel 𝑅
3 df-funALTV 38790 . . . 4 ( FunALTV 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
42, 3mpbiran2 710 . . 3 ( FunALTV 𝑅 ↔ CnvRefRel ≀ 𝑅)
54anbi1i 624 . 2 (( FunALTV 𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
61, 5bitr4i 278 1 ( Disj 𝑅 ↔ ( FunALTV 𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  ccnv 5613  Rel wrel 5619  ccoss 38232   CnvRefRel wcnvrefrel 38241   FunALTV wfunALTV 38263   Disj wdisjALTV 38266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-funALTV 38790  df-disjALTV 38813
This theorem is referenced by:  disjss  38839
  Copyright terms: Public domain W3C validator