| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 38812 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38813 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | relcnv 6052 | . . . 4 ⊢ Rel ◡𝑅 | |
| 3 | df-funALTV 38790 | . . . 4 ⊢ ( FunALTV ◡𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel ◡𝑅)) | |
| 4 | 2, 3 | mpbiran2 710 | . . 3 ⊢ ( FunALTV ◡𝑅 ↔ CnvRefRel ≀ ◡𝑅) |
| 5 | 4 | anbi1i 624 | . 2 ⊢ (( FunALTV ◡𝑅 ∧ Rel 𝑅) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ◡ccnv 5613 Rel wrel 5619 ≀ ccoss 38232 CnvRefRel wcnvrefrel 38241 FunALTV wfunALTV 38263 Disj wdisjALTV 38266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-funALTV 38790 df-disjALTV 38813 |
| This theorem is referenced by: disjss 38839 |
| Copyright terms: Public domain | W3C validator |