| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjs | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjs 38822 | . 2 ⊢ Disjs = ( Disjss ∩ Rels ) | |
| 2 | df-disjss 38821 | . 2 ⊢ Disjss = {𝑟 ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
| 3 | 1, 2 | abeqin 38309 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {crab 3396 ◡ccnv 5618 ≀ ccoss 38242 Rels crels 38244 CnvRefRels ccnvrefrels 38250 Disjss cdisjss 38274 Disjs cdisjs 38275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-disjss 38821 df-disjs 38822 |
| This theorem is referenced by: dfdisjs2 38827 eldisjs 38840 |
| Copyright terms: Public domain | W3C validator |