Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs Structured version   Visualization version   GIF version

Theorem dfdisjs 38707
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dfdisjs Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }

Proof of Theorem dfdisjs
StepHypRef Expression
1 df-disjs 38703 . 2 Disjs = ( Disjss ∩ Rels )
2 df-disjss 38702 . 2 Disjss = {𝑟 ∣ ≀ 𝑟 ∈ CnvRefRels }
31, 2abeqin 38248 1 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3408  ccnv 5640  ccoss 38176   Rels crels 38178   CnvRefRels ccnvrefrels 38184   Disjss cdisjss 38208   Disjs cdisjs 38209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-disjss 38702  df-disjs 38703
This theorem is referenced by:  dfdisjs2  38708  eldisjs  38721
  Copyright terms: Public domain W3C validator