![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjs | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjs 38660 | . 2 ⊢ Disjs = ( Disjss ∩ Rels ) | |
2 | df-disjss 38659 | . 2 ⊢ Disjss = {𝑟 ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
3 | 1, 2 | abeqin 38208 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {crab 3443 ◡ccnv 5699 ≀ ccoss 38135 Rels crels 38137 CnvRefRels ccnvrefrels 38143 Disjss cdisjss 38167 Disjs cdisjs 38168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-disjss 38659 df-disjs 38660 |
This theorem is referenced by: dfdisjs2 38665 eldisjs 38678 |
Copyright terms: Public domain | W3C validator |