Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs Structured version   Visualization version   GIF version

Theorem dfdisjs 38745
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dfdisjs Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }

Proof of Theorem dfdisjs
StepHypRef Expression
1 df-disjs 38741 . 2 Disjs = ( Disjss ∩ Rels )
2 df-disjss 38740 . 2 Disjss = {𝑟 ∣ ≀ 𝑟 ∈ CnvRefRels }
31, 2abeqin 38286 1 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {crab 3395  ccnv 5615  ccoss 38214   Rels crels 38216   CnvRefRels ccnvrefrels 38222   Disjss cdisjss 38246   Disjs cdisjs 38247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909  df-disjss 38740  df-disjs 38741
This theorem is referenced by:  dfdisjs2  38746  eldisjs  38759
  Copyright terms: Public domain W3C validator