Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjs | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjs 36815 | . 2 ⊢ Disjs = ( Disjss ∩ Rels ) | |
2 | df-disjss 36814 | . 2 ⊢ Disjss = {𝑟 ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
3 | 1, 2 | abeqin 36392 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {crab 3068 ◡ccnv 5588 ≀ ccoss 36333 Rels crels 36335 CnvRefRels ccnvrefrels 36341 Disjss cdisjss 36365 Disjs cdisjs 36366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-disjss 36814 df-disjs 36815 |
This theorem is referenced by: dfdisjs2 36820 eldisjs 36833 |
Copyright terms: Public domain | W3C validator |