Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjs | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjs 36377 | . 2 ⊢ Disjs = ( Disjss ∩ Rels ) | |
2 | df-disjss 36376 | . 2 ⊢ Disjss = {𝑟 ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
3 | 1, 2 | abeqin 35954 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 {crab 3074 ◡ccnv 5523 ≀ ccoss 35893 Rels crels 35895 CnvRefRels ccnvrefrels 35901 Disjss cdisjss 35925 Disjs cdisjs 35926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-in 3865 df-disjss 36376 df-disjs 36377 |
This theorem is referenced by: dfdisjs2 36382 eldisjs 36395 |
Copyright terms: Public domain | W3C validator |