Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs Structured version   Visualization version   GIF version

Theorem dfdisjs 36746
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dfdisjs Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }

Proof of Theorem dfdisjs
StepHypRef Expression
1 df-disjs 36742 . 2 Disjs = ( Disjss ∩ Rels )
2 df-disjss 36741 . 2 Disjss = {𝑟 ∣ ≀ 𝑟 ∈ CnvRefRels }
31, 2abeqin 36319 1 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {crab 3067  ccnv 5579  ccoss 36260   Rels crels 36262   CnvRefRels ccnvrefrels 36268   Disjss cdisjss 36292   Disjs cdisjs 36293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-disjss 36741  df-disjs 36742
This theorem is referenced by:  dfdisjs2  36747  eldisjs  36760
  Copyright terms: Public domain W3C validator