Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-disjALTV Structured version   Visualization version   GIF version

Definition df-disjALTV 37667
Description: Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV 37675, see the comment of df-disjs 37666 why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 37689. Alternate definitions are dfdisjALTV 37675, ... , dfdisjALTV5 37679. (Contributed by Peter Mazsa, 17-Jul-2021.)

Assertion
Ref Expression
df-disjALTV ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))

Detailed syntax breakdown of Definition df-disjALTV
StepHypRef Expression
1 cR . . 3 class 𝑅
21wdisjALTV 37169 . 2 wff Disj 𝑅
31ccnv 5675 . . . . 5 class 𝑅
43ccoss 37135 . . . 4 class 𝑅
54wcnvrefrel 37144 . . 3 wff CnvRefRel ≀ 𝑅
61wrel 5681 . . 3 wff Rel 𝑅
75, 6wa 396 . 2 wff ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)
82, 7wb 205 1 wff ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfdisjALTV  37675  dfdisjALTV2  37676  eldisjsdisj  37689  disjrel  37692
  Copyright terms: Public domain W3C validator