| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-disjALTV | Structured version Visualization version GIF version | ||
| Description: Define the disjoint
relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 38678,
see the comment of df-disjs 38669 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38692. Alternate definitions are dfdisjALTV 38678, ... , dfdisjALTV5 38682. (Contributed by Peter Mazsa, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| df-disjALTV | ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | wdisjALTV 38176 | . 2 wff Disj 𝑅 |
| 3 | 1 | ccnv 5630 | . . . . 5 class ◡𝑅 |
| 4 | 3 | ccoss 38142 | . . . 4 class ≀ ◡𝑅 |
| 5 | 4 | wcnvrefrel 38151 | . . 3 wff CnvRefRel ≀ ◡𝑅 |
| 6 | 1 | wrel 5636 | . . 3 wff Rel 𝑅 |
| 7 | 5, 6 | wa 395 | . 2 wff ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) |
| 8 | 2, 7 | wb 206 | 1 wff ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfdisjALTV 38678 dfdisjALTV2 38679 eldisjsdisj 38692 disjrel 38695 |
| Copyright terms: Public domain | W3C validator |