Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-disjALTV Structured version   Visualization version   GIF version

Definition df-disjALTV 38706
Description: Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV 38714, see the comment of df-disjs 38705 why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 38728. Alternate definitions are dfdisjALTV 38714, ... , dfdisjALTV5 38718. (Contributed by Peter Mazsa, 17-Jul-2021.)

Assertion
Ref Expression
df-disjALTV ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))

Detailed syntax breakdown of Definition df-disjALTV
StepHypRef Expression
1 cR . . 3 class 𝑅
21wdisjALTV 38216 . 2 wff Disj 𝑅
31ccnv 5684 . . . . 5 class 𝑅
43ccoss 38182 . . . 4 class 𝑅
54wcnvrefrel 38191 . . 3 wff CnvRefRel ≀ 𝑅
61wrel 5690 . . 3 wff Rel 𝑅
75, 6wa 395 . 2 wff ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)
82, 7wb 206 1 wff ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfdisjALTV  38714  dfdisjALTV2  38715  eldisjsdisj  38728  disjrel  38731
  Copyright terms: Public domain W3C validator