Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjsdisj Structured version   Visualization version   GIF version

Theorem eldisjsdisj 38745
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
eldisjsdisj (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))

Proof of Theorem eldisjsdisj
StepHypRef Expression
1 cosscnvex 38438 . . . 4 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 elcnvrefrelsrel 38554 . . . 4 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
31, 2syl 17 . . 3 (𝑅𝑉 → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
4 elrelsrel 38505 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
53, 4anbi12d 632 . 2 (𝑅𝑉 → (( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)))
6 eldisjs 38740 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
7 df-disjALTV 38723 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
85, 6, 73bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3459  ccnv 5653  Rel wrel 5659  ccoss 38199   Rels crels 38201   CnvRefRels ccnvrefrels 38207   CnvRefRel wcnvrefrel 38208   Disjs cdisjs 38232   Disj wdisjALTV 38233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-coss 38429  df-rels 38503  df-ssr 38516  df-cnvrefs 38543  df-cnvrefrels 38544  df-cnvrefrel 38545  df-disjss 38721  df-disjs 38722  df-disjALTV 38723
This theorem is referenced by:  eleldisjseldisj  38747  brpartspart  38791
  Copyright terms: Public domain W3C validator