Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjsdisj Structured version   Visualization version   GIF version

Theorem eldisjsdisj 37900
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
eldisjsdisj (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))

Proof of Theorem eldisjsdisj
StepHypRef Expression
1 cosscnvex 37593 . . . 4 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 elcnvrefrelsrel 37709 . . . 4 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
31, 2syl 17 . . 3 (𝑅𝑉 → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
4 elrelsrel 37660 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
53, 4anbi12d 629 . 2 (𝑅𝑉 → (( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)))
6 eldisjs 37895 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
7 df-disjALTV 37878 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
85, 6, 73bitr4g 313 1 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104  Vcvv 3472  ccnv 5674  Rel wrel 5680  ccoss 37346   Rels crels 37348   CnvRefRels ccnvrefrels 37354   CnvRefRel wcnvrefrel 37355   Disjs cdisjs 37379   Disj wdisjALTV 37380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37584  df-rels 37658  df-ssr 37671  df-cnvrefs 37698  df-cnvrefrels 37699  df-cnvrefrel 37700  df-disjss 37876  df-disjs 37877  df-disjALTV 37878
This theorem is referenced by:  eleldisjseldisj  37902  brpartspart  37946
  Copyright terms: Public domain W3C validator