Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjsdisj Structured version   Visualization version   GIF version

Theorem eldisjsdisj 38719
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
eldisjsdisj (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))

Proof of Theorem eldisjsdisj
StepHypRef Expression
1 cosscnvex 38411 . . . 4 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 elcnvrefrelsrel 38527 . . . 4 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
31, 2syl 17 . . 3 (𝑅𝑉 → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
4 elrelsrel 38478 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
53, 4anbi12d 632 . 2 (𝑅𝑉 → (( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)))
6 eldisjs 38714 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
7 df-disjALTV 38697 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
85, 6, 73bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447  ccnv 5637  Rel wrel 5643  ccoss 38169   Rels crels 38171   CnvRefRels ccnvrefrels 38177   CnvRefRel wcnvrefrel 38178   Disjs cdisjs 38202   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-coss 38402  df-rels 38476  df-ssr 38489  df-cnvrefs 38516  df-cnvrefrels 38517  df-cnvrefrel 38518  df-disjss 38695  df-disjs 38696  df-disjALTV 38697
This theorem is referenced by:  eleldisjseldisj  38721  brpartspart  38765
  Copyright terms: Public domain W3C validator