Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjsdisj Structured version   Visualization version   GIF version

Theorem eldisjsdisj 38709
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
eldisjsdisj (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))

Proof of Theorem eldisjsdisj
StepHypRef Expression
1 cosscnvex 38402 . . . 4 (𝑅𝑉 → ≀ 𝑅 ∈ V)
2 elcnvrefrelsrel 38518 . . . 4 ( ≀ 𝑅 ∈ V → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
31, 2syl 17 . . 3 (𝑅𝑉 → ( ≀ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝑅))
4 elrelsrel 38469 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
53, 4anbi12d 632 . 2 (𝑅𝑉 → (( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅)))
6 eldisjs 38704 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
7 df-disjALTV 38687 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
85, 6, 73bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  Vcvv 3478  ccnv 5688  Rel wrel 5694  ccoss 38162   Rels crels 38164   CnvRefRels ccnvrefrels 38170   CnvRefRel wcnvrefrel 38171   Disjs cdisjs 38195   Disj wdisjALTV 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-coss 38393  df-rels 38467  df-ssr 38480  df-cnvrefs 38507  df-cnvrefrels 38508  df-cnvrefrel 38509  df-disjss 38685  df-disjs 38686  df-disjALTV 38687
This theorem is referenced by:  eleldisjseldisj  38711  brpartspart  38755
  Copyright terms: Public domain W3C validator