![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjsdisj | Structured version Visualization version GIF version |
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
eldisjsdisj | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosscnvex 38376 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ≀ ◡𝑅 ∈ V) | |
2 | elcnvrefrelsrel 38492 | . . . 4 ⊢ ( ≀ ◡𝑅 ∈ V → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡𝑅)) |
4 | elrelsrel 38443 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
5 | 3, 4 | anbi12d 631 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅))) |
6 | eldisjs 38678 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | |
7 | df-disjALTV 38661 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ◡ccnv 5699 Rel wrel 5705 ≀ ccoss 38135 Rels crels 38137 CnvRefRels ccnvrefrels 38143 CnvRefRel wcnvrefrel 38144 Disjs cdisjs 38168 Disj wdisjALTV 38169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-coss 38367 df-rels 38441 df-ssr 38454 df-cnvrefs 38481 df-cnvrefrels 38482 df-cnvrefrel 38483 df-disjss 38659 df-disjs 38660 df-disjALTV 38661 |
This theorem is referenced by: eleldisjseldisj 38685 brpartspart 38729 |
Copyright terms: Public domain | W3C validator |