| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjsdisj | Structured version Visualization version GIF version | ||
| Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| Ref | Expression |
|---|---|
| eldisjsdisj | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosscnvex 38404 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ≀ ◡𝑅 ∈ V) | |
| 2 | elcnvrefrelsrel 38520 | . . . 4 ⊢ ( ≀ ◡𝑅 ∈ V → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡𝑅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡𝑅)) |
| 4 | elrelsrel 38471 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
| 5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅))) |
| 6 | eldisjs 38707 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | |
| 7 | df-disjALTV 38690 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ◡ccnv 5630 Rel wrel 5636 ≀ ccoss 38162 Rels crels 38164 CnvRefRels ccnvrefrels 38170 CnvRefRel wcnvrefrel 38171 Disjs cdisjs 38195 Disj wdisjALTV 38196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-coss 38395 df-rels 38469 df-ssr 38482 df-cnvrefs 38509 df-cnvrefrels 38510 df-cnvrefrel 38511 df-disjss 38688 df-disjs 38689 df-disjALTV 38690 |
| This theorem is referenced by: eleldisjseldisj 38714 brpartspart 38758 |
| Copyright terms: Public domain | W3C validator |