Detailed syntax breakdown of Definition df-dmd
| Step | Hyp | Ref
| Expression |
| 1 | | cdmd 30986 |
. 2
class
𝑀ℋ* |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 4 | | cch 30948 |
. . . . . 6
class
Cℋ |
| 5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑥 ∈
Cℋ |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 2108 |
. . . . 5
wff 𝑦 ∈
Cℋ |
| 9 | 5, 8 | wa 395 |
. . . 4
wff (𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ
) |
| 10 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 12 | 7, 11 | wss 3951 |
. . . . . 6
wff 𝑦 ⊆ 𝑧 |
| 13 | 11, 3 | cin 3950 |
. . . . . . . 8
class (𝑧 ∩ 𝑥) |
| 14 | | chj 30952 |
. . . . . . . 8
class
∨ℋ |
| 15 | 13, 7, 14 | co 7431 |
. . . . . . 7
class ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) |
| 16 | 3, 7, 14 | co 7431 |
. . . . . . . 8
class (𝑥 ∨ℋ 𝑦) |
| 17 | 11, 16 | cin 3950 |
. . . . . . 7
class (𝑧 ∩ (𝑥 ∨ℋ 𝑦)) |
| 18 | 15, 17 | wceq 1540 |
. . . . . 6
wff ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦)) |
| 19 | 12, 18 | wi 4 |
. . . . 5
wff (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))) |
| 20 | 19, 10, 4 | wral 3061 |
. . . 4
wff
∀𝑧 ∈
Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))) |
| 21 | 9, 20 | wa 395 |
. . 3
wff ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦)))) |
| 22 | 21, 2, 6 | copab 5205 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} |
| 23 | 1, 22 | wceq 1540 |
1
wff
𝑀ℋ* = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ ∀𝑧 ∈ Cℋ
(𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} |