HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr Structured version   Visualization version   GIF version

Theorem dmdbr 31817
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 628 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 ineq2 4207 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43oveq1d 7428 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥𝑦) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝑧))
5 oveq1 7420 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 𝑧) = (𝐴 𝑧))
65ineq2d 4213 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ∩ (𝑦 𝑧)) = (𝑥 ∩ (𝐴 𝑧)))
74, 6eqeq12d 2746 . . . . . 6 (𝑦 = 𝐴 → (((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)) ↔ ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))
87imbi2d 339 . . . . 5 (𝑦 = 𝐴 → ((𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
98ralbidv 3175 . . . 4 (𝑦 = 𝐴 → (∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
102, 9anbi12d 629 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)))) ↔ ((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))))
11 eleq1 2819 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1211anbi2d 627 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
13 sseq1 4008 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
14 oveq2 7421 . . . . . . 7 (𝑧 = 𝐵 → ((𝑥𝐴) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝐵))
15 oveq2 7421 . . . . . . . 8 (𝑧 = 𝐵 → (𝐴 𝑧) = (𝐴 𝐵))
1615ineq2d 4213 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 ∩ (𝐴 𝑧)) = (𝑥 ∩ (𝐴 𝐵)))
1714, 16eqeq12d 2746 . . . . . 6 (𝑧 = 𝐵 → (((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
1813, 17imbi12d 343 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
1918ralbidv 3175 . . . 4 (𝑧 = 𝐵 → (∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
2012, 19anbi12d 629 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))) ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
21 df-dmd 31799 . . 3 𝑀* = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))))}
2210, 20, 21brabg 5540 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
2322bianabs 540 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  cin 3948  wss 3949   class class class wbr 5149  (class class class)co 7413   C cch 30447   chj 30451   𝑀* cdmd 30485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-iota 6496  df-fv 6552  df-ov 7416  df-dmd 31799
This theorem is referenced by:  dmdmd  31818  dmdi  31820  dmdbr2  31821  dmdbr3  31823  mddmd2  31827
  Copyright terms: Public domain W3C validator