HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr Structured version   Visualization version   GIF version

Theorem dmdbr 31539
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 630 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 ineq2 4205 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43oveq1d 7420 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥𝑦) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝑧))
5 oveq1 7412 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 𝑧) = (𝐴 𝑧))
65ineq2d 4211 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ∩ (𝑦 𝑧)) = (𝑥 ∩ (𝐴 𝑧)))
74, 6eqeq12d 2748 . . . . . 6 (𝑦 = 𝐴 → (((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)) ↔ ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))
87imbi2d 340 . . . . 5 (𝑦 = 𝐴 → ((𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
98ralbidv 3177 . . . 4 (𝑦 = 𝐴 → (∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
102, 9anbi12d 631 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)))) ↔ ((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))))
11 eleq1 2821 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1211anbi2d 629 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
13 sseq1 4006 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
14 oveq2 7413 . . . . . . 7 (𝑧 = 𝐵 → ((𝑥𝐴) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝐵))
15 oveq2 7413 . . . . . . . 8 (𝑧 = 𝐵 → (𝐴 𝑧) = (𝐴 𝐵))
1615ineq2d 4211 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 ∩ (𝐴 𝑧)) = (𝑥 ∩ (𝐴 𝐵)))
1714, 16eqeq12d 2748 . . . . . 6 (𝑧 = 𝐵 → (((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
1813, 17imbi12d 344 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
1918ralbidv 3177 . . . 4 (𝑧 = 𝐵 → (∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
2012, 19anbi12d 631 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))) ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
21 df-dmd 31521 . . 3 𝑀* = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))))}
2210, 20, 21brabg 5538 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
2322bianabs 542 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  cin 3946  wss 3947   class class class wbr 5147  (class class class)co 7405   C cch 30169   chj 30173   𝑀* cdmd 30207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6492  df-fv 6548  df-ov 7408  df-dmd 31521
This theorem is referenced by:  dmdmd  31540  dmdi  31542  dmdbr2  31543  dmdbr3  31545  mddmd2  31549
  Copyright terms: Public domain W3C validator