Detailed syntax breakdown of Definition df-drngo
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdrng 37956 | . 2
class
DivRingOps | 
| 2 |  | vg | . . . . . . 7
setvar 𝑔 | 
| 3 | 2 | cv 1538 | . . . . . 6
class 𝑔 | 
| 4 |  | vh | . . . . . . 7
setvar ℎ | 
| 5 | 4 | cv 1538 | . . . . . 6
class ℎ | 
| 6 | 3, 5 | cop 4631 | . . . . 5
class
〈𝑔, ℎ〉 | 
| 7 |  | crngo 37902 | . . . . 5
class
RingOps | 
| 8 | 6, 7 | wcel 2107 | . . . 4
wff 〈𝑔, ℎ〉 ∈ RingOps | 
| 9 | 3 | crn 5685 | . . . . . . . 8
class ran 𝑔 | 
| 10 |  | cgi 30510 | . . . . . . . . . 10
class
GId | 
| 11 | 3, 10 | cfv 6560 | . . . . . . . . 9
class
(GId‘𝑔) | 
| 12 | 11 | csn 4625 | . . . . . . . 8
class
{(GId‘𝑔)} | 
| 13 | 9, 12 | cdif 3947 | . . . . . . 7
class (ran
𝑔 ∖ {(GId‘𝑔)}) | 
| 14 | 13, 13 | cxp 5682 | . . . . . 6
class ((ran
𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) | 
| 15 | 5, 14 | cres 5686 | . . . . 5
class (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) | 
| 16 |  | cgr 30509 | . . . . 5
class
GrpOp | 
| 17 | 15, 16 | wcel 2107 | . . . 4
wff (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp | 
| 18 | 8, 17 | wa 395 | . . 3
wff
(〈𝑔, ℎ〉 ∈ RingOps ∧
(ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈
GrpOp) | 
| 19 | 18, 2, 4 | copab 5204 | . 2
class
{〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} | 
| 20 | 1, 19 | wceq 1539 | 1
wff DivRingOps
= {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |