Detailed syntax breakdown of Definition df-drngo
Step | Hyp | Ref
| Expression |
1 | | cdrng 36106 |
. 2
class
DivRingOps |
2 | | vg |
. . . . . . 7
setvar 𝑔 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑔 |
4 | | vh |
. . . . . . 7
setvar ℎ |
5 | 4 | cv 1538 |
. . . . . 6
class ℎ |
6 | 3, 5 | cop 4567 |
. . . . 5
class
〈𝑔, ℎ〉 |
7 | | crngo 36052 |
. . . . 5
class
RingOps |
8 | 6, 7 | wcel 2106 |
. . . 4
wff 〈𝑔, ℎ〉 ∈ RingOps |
9 | 3 | crn 5590 |
. . . . . . . 8
class ran 𝑔 |
10 | | cgi 28852 |
. . . . . . . . . 10
class
GId |
11 | 3, 10 | cfv 6433 |
. . . . . . . . 9
class
(GId‘𝑔) |
12 | 11 | csn 4561 |
. . . . . . . 8
class
{(GId‘𝑔)} |
13 | 9, 12 | cdif 3884 |
. . . . . . 7
class (ran
𝑔 ∖ {(GId‘𝑔)}) |
14 | 13, 13 | cxp 5587 |
. . . . . 6
class ((ran
𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) |
15 | 5, 14 | cres 5591 |
. . . . 5
class (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) |
16 | | cgr 28851 |
. . . . 5
class
GrpOp |
17 | 15, 16 | wcel 2106 |
. . . 4
wff (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp |
18 | 8, 17 | wa 396 |
. . 3
wff
(〈𝑔, ℎ〉 ∈ RingOps ∧
(ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈
GrpOp) |
19 | 18, 2, 4 | copab 5136 |
. 2
class
{〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
20 | 1, 19 | wceq 1539 |
1
wff DivRingOps
= {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |