Detailed syntax breakdown of Definition df-drngo
| Step | Hyp | Ref
| Expression |
| 1 | | cdrng 37977 |
. 2
class
DivRingOps |
| 2 | | vg |
. . . . . . 7
setvar 𝑔 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑔 |
| 4 | | vh |
. . . . . . 7
setvar ℎ |
| 5 | 4 | cv 1539 |
. . . . . 6
class ℎ |
| 6 | 3, 5 | cop 4612 |
. . . . 5
class
〈𝑔, ℎ〉 |
| 7 | | crngo 37923 |
. . . . 5
class
RingOps |
| 8 | 6, 7 | wcel 2109 |
. . . 4
wff 〈𝑔, ℎ〉 ∈ RingOps |
| 9 | 3 | crn 5660 |
. . . . . . . 8
class ran 𝑔 |
| 10 | | cgi 30476 |
. . . . . . . . . 10
class
GId |
| 11 | 3, 10 | cfv 6536 |
. . . . . . . . 9
class
(GId‘𝑔) |
| 12 | 11 | csn 4606 |
. . . . . . . 8
class
{(GId‘𝑔)} |
| 13 | 9, 12 | cdif 3928 |
. . . . . . 7
class (ran
𝑔 ∖ {(GId‘𝑔)}) |
| 14 | 13, 13 | cxp 5657 |
. . . . . 6
class ((ran
𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) |
| 15 | 5, 14 | cres 5661 |
. . . . 5
class (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) |
| 16 | | cgr 30475 |
. . . . 5
class
GrpOp |
| 17 | 15, 16 | wcel 2109 |
. . . 4
wff (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp |
| 18 | 8, 17 | wa 395 |
. . 3
wff
(〈𝑔, ℎ〉 ∈ RingOps ∧
(ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈
GrpOp) |
| 19 | 18, 2, 4 | copab 5186 |
. 2
class
{〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
| 20 | 1, 19 | wceq 1540 |
1
wff DivRingOps
= {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |