Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo1 Structured version   Visualization version   GIF version

Theorem isdrngo1 37128
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
Assertion
Ref Expression
isdrngo1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem isdrngo1
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-drngo 37121 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
21relopabiv 5821 . . 3 Rel DivRingOps
3 1st2nd 8028 . . 3 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 687 . 2 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 relrngo 37068 . . . 4 Rel RingOps
6 1st2nd 8028 . . . 4 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
75, 6mpan 687 . . 3 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
87adantr 480 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
9 isdivrng1.1 . . . . 5 𝐺 = (1st𝑅)
10 isdivrng1.2 . . . . 5 𝐻 = (2nd𝑅)
119, 10opeq12i 4879 . . . 4 𝐺, 𝐻⟩ = ⟨(1st𝑅), (2nd𝑅)⟩
1211eqeq2i 2744 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ ↔ 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
1310fvexi 6906 . . . . . 6 𝐻 ∈ V
14 isdivrngo 37122 . . . . . 6 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
1513, 14ax-mp 5 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
16 isdivrng1.4 . . . . . . . . . 10 𝑋 = ran 𝐺
17 isdivrng1.3 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
1817sneqi 4640 . . . . . . . . . 10 {𝑍} = {(GId‘𝐺)}
1916, 18difeq12i 4121 . . . . . . . . 9 (𝑋 ∖ {𝑍}) = (ran 𝐺 ∖ {(GId‘𝐺)})
2019, 19xpeq12i 5705 . . . . . . . 8 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))
2120reseq2i 5979 . . . . . . 7 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2221eleq1i 2823 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)
2322anbi2i 622 . . . . 5 ((⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2415, 23bitr4i 277 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
25 eleq1 2820 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps))
26 eleq1 2820 . . . . . 6 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
2726anbi1d 629 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2825, 27bibi12d 344 . . . 4 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) ↔ (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))))
2924, 28mpbiri 257 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3012, 29sylbir 234 . 2 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
314, 8, 30pm5.21nii 378 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cdif 3946  {csn 4629  cop 4635   × cxp 5675  ran crn 5678  cres 5679  Rel wrel 5682  cfv 6544  1st c1st 7976  2nd c2nd 7977  GrpOpcgr 30006  GIdcgi 30007  RingOpscrngo 37066  DivRingOpscdrng 37120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7415  df-1st 7978  df-2nd 7979  df-rngo 37067  df-drngo 37121
This theorem is referenced by:  divrngcl  37129  isdrngo2  37130  divrngpr  37225
  Copyright terms: Public domain W3C validator