Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo1 Structured version   Visualization version   GIF version

Theorem isdrngo1 36114
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
Assertion
Ref Expression
isdrngo1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem isdrngo1
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-drngo 36107 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
21relopabiv 5730 . . 3 Rel DivRingOps
3 1st2nd 7880 . . 3 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 687 . 2 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 relrngo 36054 . . . 4 Rel RingOps
6 1st2nd 7880 . . . 4 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
75, 6mpan 687 . . 3 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
87adantr 481 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
9 isdivrng1.1 . . . . 5 𝐺 = (1st𝑅)
10 isdivrng1.2 . . . . 5 𝐻 = (2nd𝑅)
119, 10opeq12i 4809 . . . 4 𝐺, 𝐻⟩ = ⟨(1st𝑅), (2nd𝑅)⟩
1211eqeq2i 2751 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ ↔ 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
1310fvexi 6788 . . . . . 6 𝐻 ∈ V
14 isdivrngo 36108 . . . . . 6 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
1513, 14ax-mp 5 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
16 isdivrng1.4 . . . . . . . . . 10 𝑋 = ran 𝐺
17 isdivrng1.3 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
1817sneqi 4572 . . . . . . . . . 10 {𝑍} = {(GId‘𝐺)}
1916, 18difeq12i 4055 . . . . . . . . 9 (𝑋 ∖ {𝑍}) = (ran 𝐺 ∖ {(GId‘𝐺)})
2019, 19xpeq12i 5617 . . . . . . . 8 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))
2120reseq2i 5888 . . . . . . 7 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2221eleq1i 2829 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)
2322anbi2i 623 . . . . 5 ((⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2415, 23bitr4i 277 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
25 eleq1 2826 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps))
26 eleq1 2826 . . . . . 6 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
2726anbi1d 630 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2825, 27bibi12d 346 . . . 4 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) ↔ (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))))
2924, 28mpbiri 257 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3012, 29sylbir 234 . 2 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
314, 8, 30pm5.21nii 380 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  {csn 4561  cop 4567   × cxp 5587  ran crn 5590  cres 5591  Rel wrel 5594  cfv 6433  1st c1st 7829  2nd c2nd 7830  GrpOpcgr 28851  GIdcgi 28852  RingOpscrngo 36052  DivRingOpscdrng 36106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-rngo 36053  df-drngo 36107
This theorem is referenced by:  divrngcl  36115  isdrngo2  36116  divrngpr  36211
  Copyright terms: Public domain W3C validator