Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo1 Structured version   Visualization version   GIF version

Theorem isdrngo1 34085
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
Assertion
Ref Expression
isdrngo1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem isdrngo1
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-drngo 34078 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
21relopabi 5383 . . 3 Rel DivRingOps
3 1st2nd 7367 . . 3 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 670 . 2 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 relrngo 34025 . . . 4 Rel RingOps
6 1st2nd 7367 . . . 4 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
75, 6mpan 670 . . 3 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
87adantr 466 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
9 isdivrng1.1 . . . . 5 𝐺 = (1st𝑅)
10 isdivrng1.2 . . . . 5 𝐻 = (2nd𝑅)
119, 10opeq12i 4545 . . . 4 𝐺, 𝐻⟩ = ⟨(1st𝑅), (2nd𝑅)⟩
1211eqeq2i 2783 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ ↔ 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
1310fvexi 6345 . . . . . 6 𝐻 ∈ V
14 isdivrngo 34079 . . . . . 6 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
1513, 14ax-mp 5 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
16 isdivrng1.4 . . . . . . . . . 10 𝑋 = ran 𝐺
17 isdivrng1.3 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
1817sneqi 4328 . . . . . . . . . 10 {𝑍} = {(GId‘𝐺)}
1916, 18difeq12i 3877 . . . . . . . . 9 (𝑋 ∖ {𝑍}) = (ran 𝐺 ∖ {(GId‘𝐺)})
2019, 19xpeq12i 5277 . . . . . . . 8 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))
2120reseq2i 5530 . . . . . . 7 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2221eleq1i 2841 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)
2322anbi2i 609 . . . . 5 ((⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2415, 23bitr4i 267 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
25 eleq1 2838 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps))
26 eleq1 2838 . . . . . 6 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
2726anbi1d 615 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2825, 27bibi12d 334 . . . 4 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) ↔ (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))))
2924, 28mpbiri 248 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3012, 29sylbir 225 . 2 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
314, 8, 30pm5.21nii 367 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3720  {csn 4317  cop 4323   × cxp 5248  ran crn 5251  cres 5252  Rel wrel 5255  cfv 6030  1st c1st 7317  2nd c2nd 7318  GrpOpcgr 27683  GIdcgi 27684  RingOpscrngo 34023  DivRingOpscdrng 34077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6799  df-1st 7319  df-2nd 7320  df-rngo 34024  df-drngo 34078
This theorem is referenced by:  divrngcl  34086  isdrngo2  34087  divrngpr  34182
  Copyright terms: Public domain W3C validator