Step | Hyp | Ref
| Expression |
1 | | df-drngo 36034 |
. . . 4
⊢
DivRingOps = {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
2 | 1 | relopabiv 5719 |
. . 3
⊢ Rel
DivRingOps |
3 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
DivRingOps ∧ 𝑅 ∈
DivRingOps) → 𝑅 =
〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
4 | 2, 3 | mpan 686 |
. 2
⊢ (𝑅 ∈ DivRingOps → 𝑅 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉) |
5 | | relrngo 35981 |
. . . 4
⊢ Rel
RingOps |
6 | | 1st2nd 7853 |
. . . 4
⊢ ((Rel
RingOps ∧ 𝑅 ∈
RingOps) → 𝑅 =
〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
7 | 5, 6 | mpan 686 |
. . 3
⊢ (𝑅 ∈ RingOps → 𝑅 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉) |
8 | 7 | adantr 480 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
9 | | isdivrng1.1 |
. . . . 5
⊢ 𝐺 = (1st ‘𝑅) |
10 | | isdivrng1.2 |
. . . . 5
⊢ 𝐻 = (2nd ‘𝑅) |
11 | 9, 10 | opeq12i 4806 |
. . . 4
⊢
〈𝐺, 𝐻〉 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉 |
12 | 11 | eqeq2i 2751 |
. . 3
⊢ (𝑅 = 〈𝐺, 𝐻〉 ↔ 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
13 | 10 | fvexi 6770 |
. . . . . 6
⊢ 𝐻 ∈ V |
14 | | isdivrngo 36035 |
. . . . . 6
⊢ (𝐻 ∈ V → (〈𝐺, 𝐻〉 ∈ DivRingOps ↔ (〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))) |
15 | 13, 14 | ax-mp 5 |
. . . . 5
⊢
(〈𝐺, 𝐻〉 ∈ DivRingOps ↔
(〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) |
16 | | isdivrng1.4 |
. . . . . . . . . 10
⊢ 𝑋 = ran 𝐺 |
17 | | isdivrng1.3 |
. . . . . . . . . . 11
⊢ 𝑍 = (GId‘𝐺) |
18 | 17 | sneqi 4569 |
. . . . . . . . . 10
⊢ {𝑍} = {(GId‘𝐺)} |
19 | 16, 18 | difeq12i 4051 |
. . . . . . . . 9
⊢ (𝑋 ∖ {𝑍}) = (ran 𝐺 ∖ {(GId‘𝐺)}) |
20 | 19, 19 | xpeq12i 5608 |
. . . . . . . 8
⊢ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})) |
21 | 20 | reseq2i 5877 |
. . . . . . 7
⊢ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) |
22 | 21 | eleq1i 2829 |
. . . . . 6
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp) |
23 | 22 | anbi2i 622 |
. . . . 5
⊢
((〈𝐺, 𝐻〉 ∈ RingOps ∧
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) |
24 | 15, 23 | bitr4i 277 |
. . . 4
⊢
(〈𝐺, 𝐻〉 ∈ DivRingOps ↔
(〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
25 | | eleq1 2826 |
. . . . 5
⊢ (𝑅 = 〈𝐺, 𝐻〉 → (𝑅 ∈ DivRingOps ↔ 〈𝐺, 𝐻〉 ∈ DivRingOps)) |
26 | | eleq1 2826 |
. . . . . 6
⊢ (𝑅 = 〈𝐺, 𝐻〉 → (𝑅 ∈ RingOps ↔ 〈𝐺, 𝐻〉 ∈ RingOps)) |
27 | 26 | anbi1d 629 |
. . . . 5
⊢ (𝑅 = 〈𝐺, 𝐻〉 → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
28 | 25, 27 | bibi12d 345 |
. . . 4
⊢ (𝑅 = 〈𝐺, 𝐻〉 → ((𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) ↔ (〈𝐺, 𝐻〉 ∈ DivRingOps ↔ (〈𝐺, 𝐻〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))) |
29 | 24, 28 | mpbiri 257 |
. . 3
⊢ (𝑅 = 〈𝐺, 𝐻〉 → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
30 | 12, 29 | sylbir 234 |
. 2
⊢ (𝑅 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉 →
(𝑅 ∈ DivRingOps ↔
(𝑅 ∈ RingOps ∧
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
31 | 4, 8, 30 | pm5.21nii 379 |
1
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |