Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdivrngo Structured version   Visualization version   GIF version

Theorem isdivrngo 37937
Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.)
Assertion
Ref Expression
isdivrngo (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))

Proof of Theorem isdivrngo
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . . . . 5 (𝐺DivRingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps)
2 df-drngo 37936 . . . . . . 7 DivRingOps = {⟨𝑥, 𝑦⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ RingOps ∧ (𝑦 ↾ ((ran 𝑥 ∖ {(GId‘𝑥)}) × (ran 𝑥 ∖ {(GId‘𝑥)}))) ∈ GrpOp)}
32relopabiv 5833 . . . . . 6 Rel DivRingOps
43brrelex1i 5745 . . . . 5 (𝐺DivRingOps𝐻𝐺 ∈ V)
51, 4sylbir 235 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps → 𝐺 ∈ V)
65anim1i 615 . . 3 ((⟨𝐺, 𝐻⟩ ∈ DivRingOps ∧ 𝐻𝐴) → (𝐺 ∈ V ∧ 𝐻𝐴))
76ancoms 458 . 2 ((𝐻𝐴 ∧ ⟨𝐺, 𝐻⟩ ∈ DivRingOps) → (𝐺 ∈ V ∧ 𝐻𝐴))
8 rngoablo2 37896 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
9 elex 3499 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ V)
108, 9syl 17 . . . 4 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ V)
1110ad2antrl 728 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐺 ∈ V)
12 simpl 482 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐻𝐴)
1311, 12jca 511 . 2 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → (𝐺 ∈ V ∧ 𝐻𝐴))
14 df-drngo 37936 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
1514eleq2i 2831 . . 3 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)})
16 opeq1 4878 . . . . . 6 (𝑔 = 𝐺 → ⟨𝑔, ⟩ = ⟨𝐺, ⟩)
1716eleq1d 2824 . . . . 5 (𝑔 = 𝐺 → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨𝐺, ⟩ ∈ RingOps))
18 rneq 5950 . . . . . . . . 9 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
19 fveq2 6907 . . . . . . . . . 10 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
2019sneqd 4643 . . . . . . . . 9 (𝑔 = 𝐺 → {(GId‘𝑔)} = {(GId‘𝐺)})
2118, 20difeq12d 4137 . . . . . . . 8 (𝑔 = 𝐺 → (ran 𝑔 ∖ {(GId‘𝑔)}) = (ran 𝐺 ∖ {(GId‘𝐺)}))
2221sqxpeqd 5721 . . . . . . 7 (𝑔 = 𝐺 → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2322reseq2d 6000 . . . . . 6 (𝑔 = 𝐺 → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2423eleq1d 2824 . . . . 5 (𝑔 = 𝐺 → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2517, 24anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
26 opeq2 4879 . . . . . 6 ( = 𝐻 → ⟨𝐺, ⟩ = ⟨𝐺, 𝐻⟩)
2726eleq1d 2824 . . . . 5 ( = 𝐻 → (⟨𝐺, ⟩ ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
28 reseq1 5994 . . . . . 6 ( = 𝐻 → ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2928eleq1d 2824 . . . . 5 ( = 𝐻 → (( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
3027, 29anbi12d 632 . . . 4 ( = 𝐻 → ((⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3125, 30opelopabg 5548 . . 3 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3215, 31bitrid 283 . 2 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
337, 13, 32pm5.21nd 802 1 (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  {csn 4631  cop 4637   class class class wbr 5148  {copab 5210   × cxp 5687  ran crn 5690  cres 5691  cfv 6563  GrpOpcgr 30518  GIdcgi 30519  AbelOpcablo 30573  RingOpscrngo 37881  DivRingOpscdrng 37935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-rngo 37882  df-drngo 37936
This theorem is referenced by:  zrdivrng  37940  isdrngo1  37943
  Copyright terms: Public domain W3C validator