Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdivrngo Structured version   Visualization version   GIF version

Theorem isdivrngo 37944
Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.)
Assertion
Ref Expression
isdivrngo (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))

Proof of Theorem isdivrngo
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5108 . . . . 5 (𝐺DivRingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps)
2 df-drngo 37943 . . . . . . 7 DivRingOps = {⟨𝑥, 𝑦⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ RingOps ∧ (𝑦 ↾ ((ran 𝑥 ∖ {(GId‘𝑥)}) × (ran 𝑥 ∖ {(GId‘𝑥)}))) ∈ GrpOp)}
32relopabiv 5783 . . . . . 6 Rel DivRingOps
43brrelex1i 5694 . . . . 5 (𝐺DivRingOps𝐻𝐺 ∈ V)
51, 4sylbir 235 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps → 𝐺 ∈ V)
65anim1i 615 . . 3 ((⟨𝐺, 𝐻⟩ ∈ DivRingOps ∧ 𝐻𝐴) → (𝐺 ∈ V ∧ 𝐻𝐴))
76ancoms 458 . 2 ((𝐻𝐴 ∧ ⟨𝐺, 𝐻⟩ ∈ DivRingOps) → (𝐺 ∈ V ∧ 𝐻𝐴))
8 rngoablo2 37903 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
9 elex 3468 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ V)
108, 9syl 17 . . . 4 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ V)
1110ad2antrl 728 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐺 ∈ V)
12 simpl 482 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐻𝐴)
1311, 12jca 511 . 2 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → (𝐺 ∈ V ∧ 𝐻𝐴))
14 df-drngo 37943 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
1514eleq2i 2820 . . 3 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)})
16 opeq1 4837 . . . . . 6 (𝑔 = 𝐺 → ⟨𝑔, ⟩ = ⟨𝐺, ⟩)
1716eleq1d 2813 . . . . 5 (𝑔 = 𝐺 → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨𝐺, ⟩ ∈ RingOps))
18 rneq 5900 . . . . . . . . 9 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
19 fveq2 6858 . . . . . . . . . 10 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
2019sneqd 4601 . . . . . . . . 9 (𝑔 = 𝐺 → {(GId‘𝑔)} = {(GId‘𝐺)})
2118, 20difeq12d 4090 . . . . . . . 8 (𝑔 = 𝐺 → (ran 𝑔 ∖ {(GId‘𝑔)}) = (ran 𝐺 ∖ {(GId‘𝐺)}))
2221sqxpeqd 5670 . . . . . . 7 (𝑔 = 𝐺 → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2322reseq2d 5950 . . . . . 6 (𝑔 = 𝐺 → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2423eleq1d 2813 . . . . 5 (𝑔 = 𝐺 → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2517, 24anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
26 opeq2 4838 . . . . . 6 ( = 𝐻 → ⟨𝐺, ⟩ = ⟨𝐺, 𝐻⟩)
2726eleq1d 2813 . . . . 5 ( = 𝐻 → (⟨𝐺, ⟩ ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
28 reseq1 5944 . . . . . 6 ( = 𝐻 → ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2928eleq1d 2813 . . . . 5 ( = 𝐻 → (( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
3027, 29anbi12d 632 . . . 4 ( = 𝐻 → ((⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3125, 30opelopabg 5498 . . 3 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3215, 31bitrid 283 . 2 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
337, 13, 32pm5.21nd 801 1 (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  {csn 4589  cop 4595   class class class wbr 5107  {copab 5169   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  GrpOpcgr 30418  GIdcgi 30419  AbelOpcablo 30473  RingOpscrngo 37888  DivRingOpscdrng 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-rngo 37889  df-drngo 37943
This theorem is referenced by:  zrdivrng  37947  isdrngo1  37950
  Copyright terms: Public domain W3C validator