Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngoi Structured version   Visualization version   GIF version

Theorem drngoi 34172
Description: The properties of a division ring. (Contributed by NM, 4-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
drngi.1 𝐺 = (1st𝑅)
drngi.2 𝐻 = (2nd𝑅)
drngi.3 𝑋 = ran 𝐺
drngi.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
drngoi (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem drngoi
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4559 . . . . . 6 (𝑔 = (1st𝑅) → ⟨𝑔, ⟩ = ⟨(1st𝑅), ⟩)
21eleq1d 2829 . . . . 5 (𝑔 = (1st𝑅) → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨(1st𝑅), ⟩ ∈ RingOps))
3 id 22 . . . . . . . . . . . 12 (𝑔 = (1st𝑅) → 𝑔 = (1st𝑅))
4 drngi.1 . . . . . . . . . . . 12 𝐺 = (1st𝑅)
53, 4syl6eqr 2817 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → 𝑔 = 𝐺)
65rneqd 5521 . . . . . . . . . 10 (𝑔 = (1st𝑅) → ran 𝑔 = ran 𝐺)
7 drngi.3 . . . . . . . . . 10 𝑋 = ran 𝐺
86, 7syl6eqr 2817 . . . . . . . . 9 (𝑔 = (1st𝑅) → ran 𝑔 = 𝑋)
95fveq2d 6379 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → (GId‘𝑔) = (GId‘𝐺))
10 drngi.4 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
119, 10syl6eqr 2817 . . . . . . . . . 10 (𝑔 = (1st𝑅) → (GId‘𝑔) = 𝑍)
1211sneqd 4346 . . . . . . . . 9 (𝑔 = (1st𝑅) → {(GId‘𝑔)} = {𝑍})
138, 12difeq12d 3891 . . . . . . . 8 (𝑔 = (1st𝑅) → (ran 𝑔 ∖ {(GId‘𝑔)}) = (𝑋 ∖ {𝑍}))
1413sqxpeqd 5309 . . . . . . 7 (𝑔 = (1st𝑅) → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1514reseq2d 5565 . . . . . 6 (𝑔 = (1st𝑅) → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
1615eleq1d 2829 . . . . 5 (𝑔 = (1st𝑅) → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
172, 16anbi12d 624 . . . 4 (𝑔 = (1st𝑅) → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
18 opeq2 4560 . . . . . . 7 ( = (2nd𝑅) → ⟨(1st𝑅), ⟩ = ⟨(1st𝑅), (2nd𝑅)⟩)
1918eleq1d 2829 . . . . . 6 ( = (2nd𝑅) → (⟨(1st𝑅), ⟩ ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
2019anbi1d 623 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
21 id 22 . . . . . . . . 9 ( = (2nd𝑅) → = (2nd𝑅))
22 drngi.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
2321, 22syl6reqr 2818 . . . . . . . 8 ( = (2nd𝑅) → 𝐻 = )
2423reseq1d 5564 . . . . . . 7 ( = (2nd𝑅) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2524eleq1d 2829 . . . . . 6 ( = (2nd𝑅) → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
2625anbi2d 622 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2720, 26bitr4d 273 . . . 4 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2817, 27elopabi 7432 . . 3 (𝑅 ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
29 df-drngo 34170 . . 3 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
3028, 29eleq2s 2862 . 2 (𝑅 ∈ DivRingOps → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
3129relopabi 5414 . . . . 5 Rel DivRingOps
32 1st2nd 7414 . . . . 5 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3331, 32mpan 681 . . . 4 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3433eleq1d 2829 . . 3 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
3534anbi1d 623 . 2 (𝑅 ∈ DivRingOps → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3630, 35mpbird 248 1 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cdif 3729  {csn 4334  cop 4340  {copab 4871   × cxp 5275  ran crn 5278  cres 5279  Rel wrel 5282  cfv 6068  1st c1st 7364  2nd c2nd 7365  GrpOpcgr 27800  GIdcgi 27801  RingOpscrngo 34115  DivRingOpscdrng 34169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-iota 6031  df-fun 6070  df-fv 6076  df-1st 7366  df-2nd 7367  df-drngo 34170
This theorem is referenced by:  dvrunz  34175  fldcrng  34225
  Copyright terms: Public domain W3C validator