Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngoi Structured version   Visualization version   GIF version

Theorem drngoi 37980
Description: The properties of a division ring. (Contributed by NM, 4-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
drngi.1 𝐺 = (1st𝑅)
drngi.2 𝐻 = (2nd𝑅)
drngi.3 𝑋 = ran 𝐺
drngi.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
drngoi (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem drngoi
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4854 . . . . . 6 (𝑔 = (1st𝑅) → ⟨𝑔, ⟩ = ⟨(1st𝑅), ⟩)
21eleq1d 2820 . . . . 5 (𝑔 = (1st𝑅) → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨(1st𝑅), ⟩ ∈ RingOps))
3 id 22 . . . . . . . . . . . 12 (𝑔 = (1st𝑅) → 𝑔 = (1st𝑅))
4 drngi.1 . . . . . . . . . . . 12 𝐺 = (1st𝑅)
53, 4eqtr4di 2789 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → 𝑔 = 𝐺)
65rneqd 5923 . . . . . . . . . 10 (𝑔 = (1st𝑅) → ran 𝑔 = ran 𝐺)
7 drngi.3 . . . . . . . . . 10 𝑋 = ran 𝐺
86, 7eqtr4di 2789 . . . . . . . . 9 (𝑔 = (1st𝑅) → ran 𝑔 = 𝑋)
95fveq2d 6885 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → (GId‘𝑔) = (GId‘𝐺))
10 drngi.4 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
119, 10eqtr4di 2789 . . . . . . . . . 10 (𝑔 = (1st𝑅) → (GId‘𝑔) = 𝑍)
1211sneqd 4618 . . . . . . . . 9 (𝑔 = (1st𝑅) → {(GId‘𝑔)} = {𝑍})
138, 12difeq12d 4107 . . . . . . . 8 (𝑔 = (1st𝑅) → (ran 𝑔 ∖ {(GId‘𝑔)}) = (𝑋 ∖ {𝑍}))
1413sqxpeqd 5691 . . . . . . 7 (𝑔 = (1st𝑅) → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1514reseq2d 5971 . . . . . 6 (𝑔 = (1st𝑅) → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
1615eleq1d 2820 . . . . 5 (𝑔 = (1st𝑅) → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
172, 16anbi12d 632 . . . 4 (𝑔 = (1st𝑅) → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
18 opeq2 4855 . . . . . . 7 ( = (2nd𝑅) → ⟨(1st𝑅), ⟩ = ⟨(1st𝑅), (2nd𝑅)⟩)
1918eleq1d 2820 . . . . . 6 ( = (2nd𝑅) → (⟨(1st𝑅), ⟩ ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
2019anbi1d 631 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
21 drngi.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
22 id 22 . . . . . . . . 9 ( = (2nd𝑅) → = (2nd𝑅))
2321, 22eqtr4id 2790 . . . . . . . 8 ( = (2nd𝑅) → 𝐻 = )
2423reseq1d 5970 . . . . . . 7 ( = (2nd𝑅) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2524eleq1d 2820 . . . . . 6 ( = (2nd𝑅) → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
2625anbi2d 630 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2720, 26bitr4d 282 . . . 4 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2817, 27elopabi 8066 . . 3 (𝑅 ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
29 df-drngo 37978 . . 3 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
3028, 29eleq2s 2853 . 2 (𝑅 ∈ DivRingOps → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
3129relopabiv 5804 . . . . 5 Rel DivRingOps
32 1st2nd 8043 . . . . 5 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3331, 32mpan 690 . . . 4 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3433eleq1d 2820 . . 3 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
3534anbi1d 631 . 2 (𝑅 ∈ DivRingOps → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3630, 35mpbird 257 1 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3928  {csn 4606  cop 4612  {copab 5186   × cxp 5657  ran crn 5660  cres 5661  Rel wrel 5664  cfv 6536  1st c1st 7991  2nd c2nd 7992  GrpOpcgr 30475  GIdcgi 30476  RingOpscrngo 37923  DivRingOpscdrng 37977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994  df-drngo 37978
This theorem is referenced by:  dvrunz  37983  fldcrngo  38033
  Copyright terms: Public domain W3C validator