Step | Hyp | Ref
| Expression |
1 | | opeq1 4804 |
. . . . . 6
⊢ (𝑔 = (1st ‘𝑅) → 〈𝑔, ℎ〉 = 〈(1st ‘𝑅), ℎ〉) |
2 | 1 | eleq1d 2823 |
. . . . 5
⊢ (𝑔 = (1st ‘𝑅) → (〈𝑔, ℎ〉 ∈ RingOps ↔
〈(1st ‘𝑅), ℎ〉 ∈ RingOps)) |
3 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑔 = (1st ‘𝑅) → 𝑔 = (1st ‘𝑅)) |
4 | | drngi.1 |
. . . . . . . . . . . 12
⊢ 𝐺 = (1st ‘𝑅) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑔 = (1st ‘𝑅) → 𝑔 = 𝐺) |
6 | 5 | rneqd 5847 |
. . . . . . . . . 10
⊢ (𝑔 = (1st ‘𝑅) → ran 𝑔 = ran 𝐺) |
7 | | drngi.3 |
. . . . . . . . . 10
⊢ 𝑋 = ran 𝐺 |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑔 = (1st ‘𝑅) → ran 𝑔 = 𝑋) |
9 | 5 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑔 = (1st ‘𝑅) → (GId‘𝑔) = (GId‘𝐺)) |
10 | | drngi.4 |
. . . . . . . . . . 11
⊢ 𝑍 = (GId‘𝐺) |
11 | 9, 10 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑔 = (1st ‘𝑅) → (GId‘𝑔) = 𝑍) |
12 | 11 | sneqd 4573 |
. . . . . . . . 9
⊢ (𝑔 = (1st ‘𝑅) → {(GId‘𝑔)} = {𝑍}) |
13 | 8, 12 | difeq12d 4058 |
. . . . . . . 8
⊢ (𝑔 = (1st ‘𝑅) → (ran 𝑔 ∖ {(GId‘𝑔)}) = (𝑋 ∖ {𝑍})) |
14 | 13 | sqxpeqd 5621 |
. . . . . . 7
⊢ (𝑔 = (1st ‘𝑅) → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
15 | 14 | reseq2d 5891 |
. . . . . 6
⊢ (𝑔 = (1st ‘𝑅) → (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
16 | 15 | eleq1d 2823 |
. . . . 5
⊢ (𝑔 = (1st ‘𝑅) → ((ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
17 | 2, 16 | anbi12d 631 |
. . . 4
⊢ (𝑔 = (1st ‘𝑅) → ((〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔
(〈(1st ‘𝑅), ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
18 | | opeq2 4805 |
. . . . . . 7
⊢ (ℎ = (2nd ‘𝑅) → 〈(1st
‘𝑅), ℎ〉 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉) |
19 | 18 | eleq1d 2823 |
. . . . . 6
⊢ (ℎ = (2nd ‘𝑅) → (〈(1st
‘𝑅), ℎ〉 ∈ RingOps ↔
〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps)) |
20 | 19 | anbi1d 630 |
. . . . 5
⊢ (ℎ = (2nd ‘𝑅) → ((〈(1st
‘𝑅), ℎ〉 ∈ RingOps ∧
(ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
21 | | drngi.2 |
. . . . . . . . 9
⊢ 𝐻 = (2nd ‘𝑅) |
22 | | id 22 |
. . . . . . . . 9
⊢ (ℎ = (2nd ‘𝑅) → ℎ = (2nd ‘𝑅)) |
23 | 21, 22 | eqtr4id 2797 |
. . . . . . . 8
⊢ (ℎ = (2nd ‘𝑅) → 𝐻 = ℎ) |
24 | 23 | reseq1d 5890 |
. . . . . . 7
⊢ (ℎ = (2nd ‘𝑅) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
25 | 24 | eleq1d 2823 |
. . . . . 6
⊢ (ℎ = (2nd ‘𝑅) → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
26 | 25 | anbi2d 629 |
. . . . 5
⊢ (ℎ = (2nd ‘𝑅) → ((〈(1st
‘𝑅), (2nd
‘𝑅)〉 ∈
RingOps ∧ (𝐻 ↾
((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
27 | 20, 26 | bitr4d 281 |
. . . 4
⊢ (ℎ = (2nd ‘𝑅) → ((〈(1st
‘𝑅), ℎ〉 ∈ RingOps ∧
(ℎ ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
28 | 17, 27 | elopabi 7902 |
. . 3
⊢ (𝑅 ∈ {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} →
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
29 | | df-drngo 36107 |
. . 3
⊢
DivRingOps = {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
30 | 28, 29 | eleq2s 2857 |
. 2
⊢ (𝑅 ∈ DivRingOps →
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
31 | 29 | relopabiv 5730 |
. . . . 5
⊢ Rel
DivRingOps |
32 | | 1st2nd 7880 |
. . . . 5
⊢ ((Rel
DivRingOps ∧ 𝑅 ∈
DivRingOps) → 𝑅 =
〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
33 | 31, 32 | mpan 687 |
. . . 4
⊢ (𝑅 ∈ DivRingOps → 𝑅 = 〈(1st
‘𝑅), (2nd
‘𝑅)〉) |
34 | 33 | eleq1d 2823 |
. . 3
⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ↔
〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps)) |
35 | 34 | anbi1d 630 |
. 2
⊢ (𝑅 ∈ DivRingOps →
((𝑅 ∈ RingOps ∧
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔
(〈(1st ‘𝑅), (2nd ‘𝑅)〉 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))) |
36 | 30, 35 | mpbird 256 |
1
⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |