MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   GIF version

Theorem perfdvf 25837
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
perfdvf ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem perfdvf
Dummy variables 𝑓 𝑠 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 25801 . . . . . . . . . . . . . . . . . . . 20 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21dmmpossx 8024 . . . . . . . . . . . . . . . . . . 19 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
3 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ dom D )
42, 3sselid 3941 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
5 oveq2 7377 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
65opeliunxp2 5792 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
74, 6sylib 218 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
87simprd 495 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹 ∈ (ℂ ↑pm 𝑆))
9 cnex 11125 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
107simpld 494 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ∈ 𝒫 ℂ)
11 elpm2g 8794 . . . . . . . . . . . . . . . . 17 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
129, 10, 11sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
138, 12mpbid 232 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1413simpld 494 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹:dom 𝐹⟶ℂ)
1514adantr 480 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
162sseli 3939 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
1716, 6sylib 218 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1817simprd 495 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
1917simpld 494 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
209, 19, 11sylancr 587 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2118, 20mpbid 232 . . . . . . . . . . . . . . . . 17 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2221simprd 495 . . . . . . . . . . . . . . . 16 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
2322adantr 480 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹𝑆)
2410elpwid 4568 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ⊆ ℂ)
2523, 24sstrd 3954 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 ⊆ ℂ)
2625adantr 480 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (TopOpen‘ℂfld)
2827cnfldtopon 24703 . . . . . . . . . . . . . . . . 17 𝐾 ∈ (TopOn‘ℂ)
29 resttopon 23081 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3028, 24, 29sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
31 topontop 22833 . . . . . . . . . . . . . . . 16 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → (𝐾t 𝑆) ∈ Top)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Top)
33 toponuni 22834 . . . . . . . . . . . . . . . . 17 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
3430, 33syl 17 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 = (𝐾t 𝑆))
3523, 34sseqtrd 3980 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 (𝐾t 𝑆))
36 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐾t 𝑆) = (𝐾t 𝑆)
3736ntrss2 22977 . . . . . . . . . . . . . . 15 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3832, 35, 37syl2anc 584 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3938sselda 3943 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
4015, 26, 39dvlem 25830 . . . . . . . . . . . 12 ((((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ (dom 𝐹 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
4140fmpttd 7069 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):(dom 𝐹 ∖ {𝑥})⟶ℂ)
4226ssdifssd 4106 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (dom 𝐹 ∖ {𝑥}) ⊆ ℂ)
4336ntrss3 22980 . . . . . . . . . . . . . . . . . . 19 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4432, 35, 43syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4544, 34sseqtrrd 3981 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
46 restabs 23085 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆𝑆 ∈ 𝒫 ℂ) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
4728, 45, 10, 46mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Perf)
4936ntropn 22969 . . . . . . . . . . . . . . . . . 18 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
5032, 35, 49syl2anc 584 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
51 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5236, 51perfopn 23105 . . . . . . . . . . . . . . . . 17 (((𝐾t 𝑆) ∈ Perf ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆)) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5348, 50, 52syl2anc 584 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5447, 53eqeltrrd 2829 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5527cnfldtop 24704 . . . . . . . . . . . . . . . 16 𝐾 ∈ Top
5645, 24sstrd 3954 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ)
5728toponunii 22836 . . . . . . . . . . . . . . . . 17 ℂ = 𝐾
58 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5957, 58restperf 23104 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6055, 56, 59sylancr 587 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6154, 60mpbid 232 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)))
6257lpss3 23064 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6355, 25, 38, 62mp3an2i 1468 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6461, 63sstrd 3954 . . . . . . . . . . . . 13 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6564sselda 3943 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹))
6657lpdifsn 23063 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6755, 26, 66sylancr 587 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6865, 67mpbid 232 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥})))
6941, 42, 68, 27limcmo 25816 . . . . . . . . . 10 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
7069ex 412 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
71 moanimv 2612 . . . . . . . . 9 (∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
7270, 71sylibr 234 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
73 eqid 2729 . . . . . . . . . 10 (𝐾t 𝑆) = (𝐾t 𝑆)
74 eqid 2729 . . . . . . . . . 10 (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7573, 27, 74, 24, 14, 23eldv 25832 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7675mobidv 2542 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7772, 76mpbird 257 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
7877alrimiv 1927 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
79 reldv 25804 . . . . . . 7 Rel (𝑆 D 𝐹)
80 dffun6 6511 . . . . . . 7 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
8179, 80mpbiran 709 . . . . . 6 (Fun (𝑆 D 𝐹) ↔ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8278, 81sylibr 234 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → Fun (𝑆 D 𝐹))
8382funfnd 6531 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
84 vex 3448 . . . . . . 7 𝑦 ∈ V
8584elrn 5847 . . . . . 6 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
8624, 14, 23dvcl 25833 . . . . . . . 8 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
8786ex 412 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8887exlimdv 1933 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8985, 88biimtrid 242 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
9089ssrdv 3949 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ran (𝑆 D 𝐹) ⊆ ℂ)
91 df-f 6503 . . . 4 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
9283, 90, 91sylanbrc 583 . . 3 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9392ex 412 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
94 f0 6723 . . . 4 ∅:∅⟶ℂ
95 df-ov 7372 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
96 ndmfv 6875 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
9795, 96eqtrid 2776 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
9897dmeqd 5859 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
99 dm0 5874 . . . . . 6 dom ∅ = ∅
10098, 99eqtrdi 2780 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
10197, 100feq12d 6658 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ∅:∅⟶ℂ))
10294, 101mpbiri 258 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
103102a1d 25 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
10493, 103pm2.61i 182 1 ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  Vcvv 3444  cdif 3908  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585  cop 4591   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632  Rel wrel 5636  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cmin 11381   / cdiv 11811  t crest 17359  TopOpenctopn 17360  fldccnfld 21296  Topctop 22813  TopOnctopon 22830  intcnt 22937  limPtclp 23054  Perfcperf 23055   lim climc 25796   D cdv 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cnp 23148  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-limc 25800  df-dv 25801
This theorem is referenced by:  dvfg  25840
  Copyright terms: Public domain W3C validator