MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   GIF version

Theorem perfdvf 25076
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
perfdvf ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem perfdvf
Dummy variables 𝑓 𝑠 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 25040 . . . . . . . . . . . . . . . . . . . 20 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21dmmpossx 7915 . . . . . . . . . . . . . . . . . . 19 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
3 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ dom D )
42, 3sselid 3920 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
5 oveq2 7292 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
65opeliunxp2 5750 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
74, 6sylib 217 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
87simprd 496 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹 ∈ (ℂ ↑pm 𝑆))
9 cnex 10961 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
107simpld 495 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ∈ 𝒫 ℂ)
11 elpm2g 8641 . . . . . . . . . . . . . . . . 17 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
129, 10, 11sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
138, 12mpbid 231 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1413simpld 495 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹:dom 𝐹⟶ℂ)
1514adantr 481 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
162sseli 3918 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
1716, 6sylib 217 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1817simprd 496 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
1917simpld 495 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
209, 19, 11sylancr 587 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2118, 20mpbid 231 . . . . . . . . . . . . . . . . 17 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2221simprd 496 . . . . . . . . . . . . . . . 16 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
2322adantr 481 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹𝑆)
2410elpwid 4545 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ⊆ ℂ)
2523, 24sstrd 3932 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 ⊆ ℂ)
2625adantr 481 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (TopOpen‘ℂfld)
2827cnfldtopon 23955 . . . . . . . . . . . . . . . . 17 𝐾 ∈ (TopOn‘ℂ)
29 resttopon 22321 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3028, 24, 29sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
31 topontop 22071 . . . . . . . . . . . . . . . 16 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → (𝐾t 𝑆) ∈ Top)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Top)
33 toponuni 22072 . . . . . . . . . . . . . . . . 17 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
3430, 33syl 17 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 = (𝐾t 𝑆))
3523, 34sseqtrd 3962 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 (𝐾t 𝑆))
36 eqid 2739 . . . . . . . . . . . . . . . 16 (𝐾t 𝑆) = (𝐾t 𝑆)
3736ntrss2 22217 . . . . . . . . . . . . . . 15 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3832, 35, 37syl2anc 584 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3938sselda 3922 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
4015, 26, 39dvlem 25069 . . . . . . . . . . . 12 ((((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ (dom 𝐹 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
4140fmpttd 6998 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):(dom 𝐹 ∖ {𝑥})⟶ℂ)
4226ssdifssd 4078 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (dom 𝐹 ∖ {𝑥}) ⊆ ℂ)
4336ntrss3 22220 . . . . . . . . . . . . . . . . . . 19 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4432, 35, 43syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4544, 34sseqtrrd 3963 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
46 restabs 22325 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆𝑆 ∈ 𝒫 ℂ) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
4728, 45, 10, 46mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
48 simpr 485 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Perf)
4936ntropn 22209 . . . . . . . . . . . . . . . . . 18 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
5032, 35, 49syl2anc 584 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
51 eqid 2739 . . . . . . . . . . . . . . . . . 18 ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5236, 51perfopn 22345 . . . . . . . . . . . . . . . . 17 (((𝐾t 𝑆) ∈ Perf ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆)) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5348, 50, 52syl2anc 584 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5447, 53eqeltrrd 2841 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5527cnfldtop 23956 . . . . . . . . . . . . . . . 16 𝐾 ∈ Top
5645, 24sstrd 3932 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ)
5728toponunii 22074 . . . . . . . . . . . . . . . . 17 ℂ = 𝐾
58 eqid 2739 . . . . . . . . . . . . . . . . 17 (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5957, 58restperf 22344 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6055, 56, 59sylancr 587 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6154, 60mpbid 231 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)))
6257lpss3 22304 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6355, 25, 38, 62mp3an2i 1465 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6461, 63sstrd 3932 . . . . . . . . . . . . 13 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6564sselda 3922 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹))
6657lpdifsn 22303 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6755, 26, 66sylancr 587 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6865, 67mpbid 231 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥})))
6941, 42, 68, 27limcmo 25055 . . . . . . . . . 10 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
7069ex 413 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
71 moanimv 2622 . . . . . . . . 9 (∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
7270, 71sylibr 233 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
73 eqid 2739 . . . . . . . . . 10 (𝐾t 𝑆) = (𝐾t 𝑆)
74 eqid 2739 . . . . . . . . . 10 (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7573, 27, 74, 24, 14, 23eldv 25071 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7675mobidv 2550 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7772, 76mpbird 256 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
7877alrimiv 1931 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
79 reldv 25043 . . . . . . 7 Rel (𝑆 D 𝐹)
80 dffun6 6449 . . . . . . 7 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
8179, 80mpbiran 706 . . . . . 6 (Fun (𝑆 D 𝐹) ↔ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8278, 81sylibr 233 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → Fun (𝑆 D 𝐹))
8382funfnd 6472 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
84 vex 3437 . . . . . . 7 𝑦 ∈ V
8584elrn 5805 . . . . . 6 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
8624, 14, 23dvcl 25072 . . . . . . . 8 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
8786ex 413 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8887exlimdv 1937 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8985, 88syl5bi 241 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
9089ssrdv 3928 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ran (𝑆 D 𝐹) ⊆ ℂ)
91 df-f 6441 . . . 4 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
9283, 90, 91sylanbrc 583 . . 3 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9392ex 413 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
94 f0 6664 . . . 4 ∅:∅⟶ℂ
95 df-ov 7287 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
96 ndmfv 6813 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
9795, 96eqtrid 2791 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
9897dmeqd 5817 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
99 dm0 5832 . . . . . 6 dom ∅ = ∅
10098, 99eqtrdi 2795 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
10197, 100feq12d 6597 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ∅:∅⟶ℂ))
10294, 101mpbiri 257 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
103102a1d 25 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
10493, 103pm2.61i 182 1 ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2107  ∃*wmo 2539  Vcvv 3433  cdif 3885  wss 3888  c0 4257  𝒫 cpw 4534  {csn 4562  cop 4568   cuni 4840   ciun 4925   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  ran crn 5591  Rel wrel 5595  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  pm cpm 8625  cc 10878  cmin 11214   / cdiv 11641  t crest 17140  TopOpenctopn 17141  fldccnfld 20606  Topctop 22051  TopOnctopon 22068  intcnt 22177  limPtclp 22294  Perfcperf 22295   lim climc 25035   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-icc 13095  df-fz 13249  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-struct 16857  df-slot 16892  df-ndx 16904  df-base 16922  df-plusg 16984  df-mulr 16985  df-starv 16986  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-rest 17142  df-topn 17143  df-topgen 17163  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cnp 22388  df-haus 22475  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-limc 25039  df-dv 25040
This theorem is referenced by:  dvfg  25079
  Copyright terms: Public domain W3C validator