Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   GIF version

Theorem perfdvf 24513
 Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
perfdvf ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem perfdvf
Dummy variables 𝑓 𝑠 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 24477 . . . . . . . . . . . . . . . . . . . 20 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21dmmpossx 7748 . . . . . . . . . . . . . . . . . . 19 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
3 simpl 486 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ dom D )
42, 3sseldi 3913 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
5 oveq2 7143 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
65opeliunxp2 5673 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
74, 6sylib 221 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
87simprd 499 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹 ∈ (ℂ ↑pm 𝑆))
9 cnex 10609 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
107simpld 498 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ∈ 𝒫 ℂ)
11 elpm2g 8408 . . . . . . . . . . . . . . . . 17 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
129, 10, 11sylancr 590 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
138, 12mpbid 235 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1413simpld 498 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹:dom 𝐹⟶ℂ)
1514adantr 484 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
162sseli 3911 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
1716, 6sylib 221 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1817simprd 499 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
1917simpld 498 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
209, 19, 11sylancr 590 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2118, 20mpbid 235 . . . . . . . . . . . . . . . . 17 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2221simprd 499 . . . . . . . . . . . . . . . 16 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
2322adantr 484 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹𝑆)
2410elpwid 4508 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ⊆ ℂ)
2523, 24sstrd 3925 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 ⊆ ℂ)
2625adantr 484 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (TopOpen‘ℂfld)
2827cnfldtopon 23395 . . . . . . . . . . . . . . . . 17 𝐾 ∈ (TopOn‘ℂ)
29 resttopon 21773 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3028, 24, 29sylancr 590 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
31 topontop 21525 . . . . . . . . . . . . . . . 16 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → (𝐾t 𝑆) ∈ Top)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Top)
33 toponuni 21526 . . . . . . . . . . . . . . . . 17 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
3430, 33syl 17 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 = (𝐾t 𝑆))
3523, 34sseqtrd 3955 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 (𝐾t 𝑆))
36 eqid 2798 . . . . . . . . . . . . . . . 16 (𝐾t 𝑆) = (𝐾t 𝑆)
3736ntrss2 21669 . . . . . . . . . . . . . . 15 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3832, 35, 37syl2anc 587 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3938sselda 3915 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
4015, 26, 39dvlem 24506 . . . . . . . . . . . 12 ((((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ (dom 𝐹 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
4140fmpttd 6856 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):(dom 𝐹 ∖ {𝑥})⟶ℂ)
4226ssdifssd 4070 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (dom 𝐹 ∖ {𝑥}) ⊆ ℂ)
4336ntrss3 21672 . . . . . . . . . . . . . . . . . . 19 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4432, 35, 43syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4544, 34sseqtrrd 3956 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
46 restabs 21777 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆𝑆 ∈ 𝒫 ℂ) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
4728, 45, 10, 46mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
48 simpr 488 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Perf)
4936ntropn 21661 . . . . . . . . . . . . . . . . . 18 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
5032, 35, 49syl2anc 587 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
51 eqid 2798 . . . . . . . . . . . . . . . . . 18 ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5236, 51perfopn 21797 . . . . . . . . . . . . . . . . 17 (((𝐾t 𝑆) ∈ Perf ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆)) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5348, 50, 52syl2anc 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5447, 53eqeltrrd 2891 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5527cnfldtop 23396 . . . . . . . . . . . . . . . 16 𝐾 ∈ Top
5645, 24sstrd 3925 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ)
5728toponunii 21528 . . . . . . . . . . . . . . . . 17 ℂ = 𝐾
58 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5957, 58restperf 21796 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6055, 56, 59sylancr 590 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6154, 60mpbid 235 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)))
6257lpss3 21756 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6355, 25, 38, 62mp3an2i 1463 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6461, 63sstrd 3925 . . . . . . . . . . . . 13 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6564sselda 3915 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹))
6657lpdifsn 21755 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6755, 26, 66sylancr 590 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6865, 67mpbid 235 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥})))
6941, 42, 68, 27limcmo 24492 . . . . . . . . . 10 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
7069ex 416 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
71 moanimv 2681 . . . . . . . . 9 (∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
7270, 71sylibr 237 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
73 eqid 2798 . . . . . . . . . 10 (𝐾t 𝑆) = (𝐾t 𝑆)
74 eqid 2798 . . . . . . . . . 10 (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7573, 27, 74, 24, 14, 23eldv 24508 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7675mobidv 2608 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7772, 76mpbird 260 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
7877alrimiv 1928 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
79 reldv 24480 . . . . . . 7 Rel (𝑆 D 𝐹)
80 dffun6 6339 . . . . . . 7 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
8179, 80mpbiran 708 . . . . . 6 (Fun (𝑆 D 𝐹) ↔ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8278, 81sylibr 237 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → Fun (𝑆 D 𝐹))
8382funfnd 6355 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
84 vex 3444 . . . . . . 7 𝑦 ∈ V
8584elrn 5786 . . . . . 6 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
8624, 14, 23dvcl 24509 . . . . . . . 8 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
8786ex 416 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8887exlimdv 1934 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8985, 88syl5bi 245 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
9089ssrdv 3921 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ran (𝑆 D 𝐹) ⊆ ℂ)
91 df-f 6328 . . . 4 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
9283, 90, 91sylanbrc 586 . . 3 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9392ex 416 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
94 f0 6534 . . . 4 ∅:∅⟶ℂ
95 df-ov 7138 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
96 ndmfv 6675 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
9795, 96syl5eq 2845 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
9897dmeqd 5738 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
99 dm0 5754 . . . . . 6 dom ∅ = ∅
10098, 99eqtrdi 2849 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
10197, 100feq12d 6475 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ∅:∅⟶ℂ))
10294, 101mpbiri 261 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
103102a1d 25 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
10493, 103pm2.61i 185 1 ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∃*wmo 2596  Vcvv 3441   ∖ cdif 3878   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  {csn 4525  ⟨cop 4531  ∪ cuni 4800  ∪ ciun 4881   class class class wbr 5030   ↦ cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  Rel wrel 5524  Fun wfun 6318   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑pm cpm 8392  ℂcc 10526   − cmin 10861   / cdiv 11288   ↾t crest 16688  TopOpenctopn 16689  ℂfldccnfld 20094  Topctop 21505  TopOnctopon 21522  intcnt 21629  limPtclp 21746  Perfcperf 21747   limℂ climc 24472   D cdv 24473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fi 8861  df-sup 8892  df-inf 8893  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-fz 12888  df-seq 13367  df-exp 13428  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-nei 21710  df-lp 21748  df-perf 21749  df-cnp 21840  df-haus 21927  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-xms 22934  df-ms 22935  df-limc 24476  df-dv 24477 This theorem is referenced by:  dvfg  24516
 Copyright terms: Public domain W3C validator