MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   GIF version

Theorem perfdvf 24184
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
perfdvf ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem perfdvf
Dummy variables 𝑓 𝑠 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 24148 . . . . . . . . . . . . . . . . . . . 20 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21dmmpossx 7620 . . . . . . . . . . . . . . . . . . 19 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
3 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ dom D )
42, 3sseldi 3887 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
5 oveq2 7024 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
65opeliunxp2 5595 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
74, 6sylib 219 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
87simprd 496 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹 ∈ (ℂ ↑pm 𝑆))
9 cnex 10464 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
107simpld 495 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ∈ 𝒫 ℂ)
11 elpm2g 8273 . . . . . . . . . . . . . . . . 17 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
129, 10, 11sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
138, 12mpbid 233 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1413simpld 495 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹:dom 𝐹⟶ℂ)
1514adantr 481 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
162sseli 3885 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
1716, 6sylib 219 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1817simprd 496 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
1917simpld 495 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
209, 19, 11sylancr 587 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2118, 20mpbid 233 . . . . . . . . . . . . . . . . 17 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2221simprd 496 . . . . . . . . . . . . . . . 16 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
2322adantr 481 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹𝑆)
2410elpwid 4465 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ⊆ ℂ)
2523, 24sstrd 3899 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 ⊆ ℂ)
2625adantr 481 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (TopOpen‘ℂfld)
2827cnfldtopon 23074 . . . . . . . . . . . . . . . . 17 𝐾 ∈ (TopOn‘ℂ)
29 resttopon 21453 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3028, 24, 29sylancr 587 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
31 topontop 21205 . . . . . . . . . . . . . . . 16 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → (𝐾t 𝑆) ∈ Top)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Top)
33 toponuni 21206 . . . . . . . . . . . . . . . . 17 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
3430, 33syl 17 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 = (𝐾t 𝑆))
3523, 34sseqtrd 3928 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 (𝐾t 𝑆))
36 eqid 2795 . . . . . . . . . . . . . . . 16 (𝐾t 𝑆) = (𝐾t 𝑆)
3736ntrss2 21349 . . . . . . . . . . . . . . 15 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3832, 35, 37syl2anc 584 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3938sselda 3889 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
4015, 26, 39dvlem 24177 . . . . . . . . . . . 12 ((((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ (dom 𝐹 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
4140fmpttd 6742 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):(dom 𝐹 ∖ {𝑥})⟶ℂ)
4226ssdifssd 4040 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (dom 𝐹 ∖ {𝑥}) ⊆ ℂ)
4336ntrss3 21352 . . . . . . . . . . . . . . . . . . 19 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4432, 35, 43syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4544, 34sseqtr4d 3929 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
46 restabs 21457 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆𝑆 ∈ 𝒫 ℂ) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
4728, 45, 10, 46mp3an2i 1458 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
48 simpr 485 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Perf)
4936ntropn 21341 . . . . . . . . . . . . . . . . . 18 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
5032, 35, 49syl2anc 584 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
51 eqid 2795 . . . . . . . . . . . . . . . . . 18 ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5236, 51perfopn 21477 . . . . . . . . . . . . . . . . 17 (((𝐾t 𝑆) ∈ Perf ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆)) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5348, 50, 52syl2anc 584 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5447, 53eqeltrrd 2884 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5527cnfldtop 23075 . . . . . . . . . . . . . . . 16 𝐾 ∈ Top
5645, 24sstrd 3899 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ)
5728toponunii 21208 . . . . . . . . . . . . . . . . 17 ℂ = 𝐾
58 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5957, 58restperf 21476 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6055, 56, 59sylancr 587 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6154, 60mpbid 233 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)))
6257lpss3 21436 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6355, 25, 38, 62mp3an2i 1458 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6461, 63sstrd 3899 . . . . . . . . . . . . 13 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6564sselda 3889 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹))
6657lpdifsn 21435 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6755, 26, 66sylancr 587 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
6865, 67mpbid 233 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥})))
6941, 42, 68, 27limcmo 24163 . . . . . . . . . 10 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
7069ex 413 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
71 moanimv 2672 . . . . . . . . 9 (∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
7270, 71sylibr 235 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
73 eqid 2795 . . . . . . . . . 10 (𝐾t 𝑆) = (𝐾t 𝑆)
74 eqid 2795 . . . . . . . . . 10 (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7573, 27, 74, 24, 14, 23eldv 24179 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7675mobidv 2588 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7772, 76mpbird 258 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
7877alrimiv 1905 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
79 reldv 24151 . . . . . . 7 Rel (𝑆 D 𝐹)
80 dffun6 6240 . . . . . . 7 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
8179, 80mpbiran 705 . . . . . 6 (Fun (𝑆 D 𝐹) ↔ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8278, 81sylibr 235 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → Fun (𝑆 D 𝐹))
8382funfnd 6256 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
84 vex 3440 . . . . . . 7 𝑦 ∈ V
8584elrn 5704 . . . . . 6 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
8624, 14, 23dvcl 24180 . . . . . . . 8 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
8786ex 413 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8887exlimdv 1911 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
8985, 88syl5bi 243 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
9089ssrdv 3895 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ran (𝑆 D 𝐹) ⊆ ℂ)
91 df-f 6229 . . . 4 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
9283, 90, 91sylanbrc 583 . . 3 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9392ex 413 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
94 f0 6428 . . . 4 ∅:∅⟶ℂ
95 df-ov 7019 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
96 ndmfv 6568 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
9795, 96syl5eq 2843 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
9897dmeqd 5660 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
99 dm0 5676 . . . . . 6 dom ∅ = ∅
10098, 99syl6eq 2847 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
10197, 100feq12d 6370 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ∅:∅⟶ℂ))
10294, 101mpbiri 259 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
103102a1d 25 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
10493, 103pm2.61i 183 1 ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1520   = wceq 1522  wex 1761  wcel 2081  ∃*wmo 2574  Vcvv 3437  cdif 3856  wss 3859  c0 4211  𝒫 cpw 4453  {csn 4472  cop 4478   cuni 4745   ciun 4825   class class class wbr 4962  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  Rel wrel 5448  Fun wfun 6219   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  pm cpm 8257  cc 10381  cmin 10717   / cdiv 11145  t crest 16523  TopOpenctopn 16524  fldccnfld 20227  Topctop 21185  TopOnctopon 21202  intcnt 21309  limPtclp 21426  Perfcperf 21427   lim climc 24143   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cnp 21520  df-haus 21607  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-limc 24147  df-dv 24148
This theorem is referenced by:  dvfg  24187
  Copyright terms: Public domain W3C validator