Step | Hyp | Ref
| Expression |
1 | | df-dv 24551 |
. . . 4
⊢ D =
(𝑠 ∈ 𝒫
ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
3 | | dvval.k |
. . . . . . . 8
⊢ 𝐾 =
(TopOpen‘ℂfld) |
4 | 3 | oveq1i 7153 |
. . . . . . 7
⊢ (𝐾 ↾t 𝑠) =
((TopOpen‘ℂfld) ↾t 𝑠) |
5 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑠 = 𝑆) |
6 | 5 | oveq2d 7159 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝐾 ↾t 𝑠) = (𝐾 ↾t 𝑆)) |
7 | | dvval.t |
. . . . . . . 8
⊢ 𝑇 = (𝐾 ↾t 𝑆) |
8 | 6, 7 | eqtr4di 2812 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝐾 ↾t 𝑠) = 𝑇) |
9 | 4, 8 | syl5eqr 2808 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) →
((TopOpen‘ℂfld) ↾t 𝑠) = 𝑇) |
10 | 9 | fveq2d 6655 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) →
(int‘((TopOpen‘ℂfld) ↾t 𝑠)) = (int‘𝑇)) |
11 | | simprr 773 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
12 | 11 | dmeqd 5738 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹) |
13 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝐹:𝐴⟶ℂ) |
14 | 13 | fdmd 6501 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝐹 = 𝐴) |
15 | 12, 14 | eqtrd 2794 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝑓 = 𝐴) |
16 | 10, 15 | fveq12d 6658 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) →
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓) = ((int‘𝑇)‘𝐴)) |
17 | 15 | difeq1d 4023 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (dom 𝑓 ∖ {𝑥}) = (𝐴 ∖ {𝑥})) |
18 | 11 | fveq1d 6653 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
19 | 11 | fveq1d 6653 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
20 | 18, 19 | oveq12d 7161 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((𝑓‘𝑧) − (𝑓‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝑥))) |
21 | 20 | oveq1d 7158 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
22 | 17, 21 | mpteq12dv 5110 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)))) |
23 | 22 | oveq1d 7158 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
24 | 23 | xpeq2d 5547 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
25 | 16, 24 | iuneq12d 4904 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
26 | | simpr 489 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
27 | 26 | oveq2d 7159 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm
𝑆)) |
28 | | simp1 1134 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) |
29 | | cnex 10641 |
. . . . 5
⊢ ℂ
∈ V |
30 | 29 | elpw2 5208 |
. . . 4
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
31 | 28, 30 | sylibr 237 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ∈ 𝒫 ℂ) |
32 | 29 | a1i 11 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ℂ ∈ V) |
33 | | simp2 1135 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) |
34 | | simp3 1136 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) |
35 | | elpm2r 8427 |
. . . 4
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
36 | 32, 31, 33, 34, 35 | syl22anc 838 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
37 | | limccl 24559 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ |
38 | | xpss2 5537 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ → ({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ)) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . 8
⊢ ({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) |
40 | 39 | rgenw 3080 |
. . . . . . 7
⊢
∀𝑥 ∈
((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) |
41 | | ss2iun 4894 |
. . . . . . 7
⊢
(∀𝑥 ∈
((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) → ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ)) |
42 | 40, 41 | ax-mp 5 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ) |
43 | | iunxpconst 5586 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ) = (((int‘𝑇)‘𝐴) × ℂ) |
44 | 42, 43 | sseqtri 3924 |
. . . . 5
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ) |
45 | 44 | a1i 11 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ)) |
46 | | fvex 6664 |
. . . . . 6
⊢
((int‘𝑇)‘𝐴) ∈ V |
47 | 46, 29 | xpex 7467 |
. . . . 5
⊢
(((int‘𝑇)‘𝐴) × ℂ) ∈ V |
48 | 47 | ssex 5184 |
. . . 4
⊢ (∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ) → ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
49 | 45, 48 | syl 17 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
50 | 2, 25, 27, 31, 36, 49 | ovmpodx 7289 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
51 | 50, 45 | eqsstrd 3926 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)) |
52 | 50, 51 | jca 516 |
1
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |