| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldv | Structured version Visualization version GIF version | ||
| Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| reldv | ⊢ Rel (𝑆 D 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5639 | . . . . . . . 8 ⊢ Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | |
| 2 | 1 | rgenw 3052 | . . . . . . 7 ⊢ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 3 | reliun 5762 | . . . . . . 7 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 4 | 2, 3 | mpbir 231 | . . . . . 6 ⊢ Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 5 | df-rel 5628 | . . . . . 6 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 7 | 6 | rgenw 3052 | . . . 4 ⊢ ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 8 | 7 | rgenw 3052 | . . 3 ⊢ ∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 9 | df-dv 25815 | . . . 4 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 10 | 9 | ovmptss 8032 | . . 3 ⊢ (∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) → (𝑆 D 𝐹) ⊆ (V × V)) |
| 11 | 8, 10 | ax-mp 5 | . 2 ⊢ (𝑆 D 𝐹) ⊆ (V × V) |
| 12 | df-rel 5628 | . 2 ⊢ (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V)) | |
| 13 | 11, 12 | mpbir 231 | 1 ⊢ Rel (𝑆 D 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4551 {csn 4577 ∪ ciun 4943 ↦ cmpt 5176 × cxp 5619 dom cdm 5621 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 ↑pm cpm 8760 ℂcc 11015 − cmin 11355 / cdiv 11785 ↾t crest 17331 TopOpenctopn 17332 ℂfldccnfld 21300 intcnt 22952 limℂ climc 25810 D cdv 25811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-dv 25815 |
| This theorem is referenced by: perfdvf 25851 dvres 25859 dvres3 25861 dvres3a 25862 dvidlem 25863 dvmulbr 25888 dvmulbrOLD 25889 dvaddf 25892 dvmulf 25893 dvcobr 25896 dvcobrOLD 25897 dvcof 25899 dvcnv 25928 |
| Copyright terms: Public domain | W3C validator |