MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldv Structured version   Visualization version   GIF version

Theorem reldv 25823
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
reldv Rel (𝑆 D 𝐹)

Proof of Theorem reldv
Dummy variables 𝑓 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5672 . . . . . . . 8 Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
21rgenw 3055 . . . . . . 7 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
3 reliun 5795 . . . . . . 7 (Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
42, 3mpbir 231 . . . . . 6 Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
5 df-rel 5661 . . . . . 6 (Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
76rgenw 3055 . . . 4 𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
87rgenw 3055 . . 3 𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
9 df-dv 25820 . . . 4 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
109ovmptss 8092 . . 3 (∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V) → (𝑆 D 𝐹) ⊆ (V × V))
118, 10ax-mp 5 . 2 (𝑆 D 𝐹) ⊆ (V × V)
12 df-rel 5661 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
1311, 12mpbir 231 1 Rel (𝑆 D 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wral 3051  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575  {csn 4601   ciun 4967  cmpt 5201   × cxp 5652  dom cdm 5654  Rel wrel 5659  cfv 6531  (class class class)co 7405  pm cpm 8841  cc 11127  cmin 11466   / cdiv 11894  t crest 17434  TopOpenctopn 17435  fldccnfld 21315  intcnt 22955   lim climc 25815   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-dv 25820
This theorem is referenced by:  perfdvf  25856  dvres  25864  dvres3  25866  dvres3a  25867  dvidlem  25868  dvmulbr  25893  dvmulbrOLD  25894  dvaddf  25897  dvmulf  25898  dvcobr  25901  dvcobrOLD  25902  dvcof  25904  dvcnv  25933
  Copyright terms: Public domain W3C validator