| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldv | Structured version Visualization version GIF version | ||
| Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| reldv | ⊢ Rel (𝑆 D 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5641 | . . . . . . . 8 ⊢ Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | |
| 2 | 1 | rgenw 3048 | . . . . . . 7 ⊢ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 3 | reliun 5763 | . . . . . . 7 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 4 | 2, 3 | mpbir 231 | . . . . . 6 ⊢ Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 5 | df-rel 5630 | . . . . . 6 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 7 | 6 | rgenw 3048 | . . . 4 ⊢ ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 8 | 7 | rgenw 3048 | . . 3 ⊢ ∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 9 | df-dv 25784 | . . . 4 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 10 | 9 | ovmptss 8033 | . . 3 ⊢ (∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) → (𝑆 D 𝐹) ⊆ (V × V)) |
| 11 | 8, 10 | ax-mp 5 | . 2 ⊢ (𝑆 D 𝐹) ⊆ (V × V) |
| 12 | df-rel 5630 | . 2 ⊢ (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V)) | |
| 13 | 11, 12 | mpbir 231 | 1 ⊢ Rel (𝑆 D 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 𝒫 cpw 4553 {csn 4579 ∪ ciun 4944 ↦ cmpt 5176 × cxp 5621 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 − cmin 11365 / cdiv 11795 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 intcnt 22920 limℂ climc 25779 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-dv 25784 |
| This theorem is referenced by: perfdvf 25820 dvres 25828 dvres3 25830 dvres3a 25831 dvidlem 25832 dvmulbr 25857 dvmulbrOLD 25858 dvaddf 25861 dvmulf 25862 dvcobr 25865 dvcobrOLD 25866 dvcof 25868 dvcnv 25897 |
| Copyright terms: Public domain | W3C validator |