| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldv | Structured version Visualization version GIF version | ||
| Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| reldv | ⊢ Rel (𝑆 D 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5629 | . . . . . . . 8 ⊢ Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | |
| 2 | 1 | rgenw 3051 | . . . . . . 7 ⊢ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 3 | reliun 5751 | . . . . . . 7 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 4 | 2, 3 | mpbir 231 | . . . . . 6 ⊢ Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 5 | df-rel 5618 | . . . . . 6 ⊢ (Rel ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 7 | 6 | rgenw 3051 | . . . 4 ⊢ ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 8 | 7 | rgenw 3051 | . . 3 ⊢ ∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
| 9 | df-dv 25790 | . . . 4 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 10 | 9 | ovmptss 8018 | . . 3 ⊢ (∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠)∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) → (𝑆 D 𝐹) ⊆ (V × V)) |
| 11 | 8, 10 | ax-mp 5 | . 2 ⊢ (𝑆 D 𝐹) ⊆ (V × V) |
| 12 | df-rel 5618 | . 2 ⊢ (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V)) | |
| 13 | 11, 12 | mpbir 231 | 1 ⊢ Rel (𝑆 D 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 𝒫 cpw 4545 {csn 4571 ∪ ciun 4936 ↦ cmpt 5167 × cxp 5609 dom cdm 5611 Rel wrel 5616 ‘cfv 6476 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10999 − cmin 11339 / cdiv 11769 ↾t crest 17319 TopOpenctopn 17320 ℂfldccnfld 21286 intcnt 22927 limℂ climc 25785 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-dv 25790 |
| This theorem is referenced by: perfdvf 25826 dvres 25834 dvres3 25836 dvres3a 25837 dvidlem 25838 dvmulbr 25863 dvmulbrOLD 25864 dvaddf 25867 dvmulf 25868 dvcobr 25871 dvcobrOLD 25872 dvcof 25874 dvcnv 25903 |
| Copyright terms: Public domain | W3C validator |