MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldv Structured version   Visualization version   GIF version

Theorem reldv 25778
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
reldv Rel (𝑆 D 𝐹)

Proof of Theorem reldv
Dummy variables 𝑓 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5659 . . . . . . . 8 Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
21rgenw 3049 . . . . . . 7 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
3 reliun 5782 . . . . . . 7 (Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)Rel ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
42, 3mpbir 231 . . . . . 6 Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
5 df-rel 5648 . . . . . 6 (Rel 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
76rgenw 3049 . . . 4 𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
87rgenw 3049 . . 3 𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
9 df-dv 25775 . . . 4 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
109ovmptss 8075 . . 3 (∀𝑠 ∈ 𝒫 ℂ∀𝑓 ∈ (ℂ ↑pm 𝑠) 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V) → (𝑆 D 𝐹) ⊆ (V × V))
118, 10ax-mp 5 . 2 (𝑆 D 𝐹) ⊆ (V × V)
12 df-rel 5648 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
1311, 12mpbir 231 1 Rel (𝑆 D 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wral 3045  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566  {csn 4592   ciun 4958  cmpt 5191   × cxp 5639  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  cmin 11412   / cdiv 11842  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  intcnt 22911   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-dv 25775
This theorem is referenced by:  perfdvf  25811  dvres  25819  dvres3  25821  dvres3a  25822  dvidlem  25823  dvmulbr  25848  dvmulbrOLD  25849  dvaddf  25852  dvmulf  25853  dvcobr  25856  dvcobrOLD  25857  dvcof  25859  dvcnv  25888
  Copyright terms: Public domain W3C validator