MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbsss Structured version   Visualization version   GIF version

Theorem dvbsss 25957
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
dvbsss dom (𝑆 D 𝐹) ⊆ 𝑆

Proof of Theorem dvbsss
Dummy variables 𝑓 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 25922 . . . . . . . . . . 11 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21reldmmpo 7584 . . . . . . . . . 10 Rel dom D
3 df-rel 5707 . . . . . . . . . 10 (Rel dom D ↔ dom D ⊆ (V × V))
42, 3mpbi 230 . . . . . . . . 9 dom D ⊆ (V × V)
54sseli 4004 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ (V × V))
6 opelxp1 5742 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ (V × V) → 𝑆 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ V)
8 opeq1 4897 . . . . . . . . . 10 (𝑠 = 𝑆 → ⟨𝑠, 𝐹⟩ = ⟨𝑆, 𝐹⟩)
98eleq1d 2829 . . . . . . . . 9 (𝑠 = 𝑆 → (⟨𝑠, 𝐹⟩ ∈ dom D ↔ ⟨𝑆, 𝐹⟩ ∈ dom D ))
10 eleq1 2832 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ))
11 oveq2 7456 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
1211eleq2d 2830 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1310, 12anbi12d 631 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
149, 13imbi12d 344 . . . . . . . 8 (𝑠 = 𝑆 → ((⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))))
151dmmpossx 8107 . . . . . . . . . 10 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
1615sseli 4004 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ dom D → ⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
17 opeliunxp 5767 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1816, 17sylib 218 . . . . . . . 8 (⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1914, 18vtoclg 3566 . . . . . . 7 (𝑆 ∈ V → (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
207, 19mpcom 38 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
2120simpld 494 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
2221elpwid 4631 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ⊆ ℂ)
2320simprd 495 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
24 cnex 11265 . . . . . . 7 ℂ ∈ V
25 elpm2g 8902 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2624, 21, 25sylancr 586 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2723, 26mpbid 232 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2827simpld 494 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹:dom 𝐹⟶ℂ)
2927simprd 495 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
3022, 28, 29dvbss 25956 . . 3 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹)
3130, 29sstrd 4019 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
32 df-ov 7451 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
33 ndmfv 6955 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
3432, 33eqtrid 2792 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
3534dmeqd 5930 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
36 dm0 5945 . . . 4 dom ∅ = ∅
3735, 36eqtrdi 2796 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
38 0ss 4423 . . 3 ∅ ⊆ 𝑆
3937, 38eqsstrdi 4063 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
4031, 39pm2.61i 182 1 dom (𝑆 D 𝐹) ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cop 4654   ciun 5015  cmpt 5249   × cxp 5698  dom cdm 5700  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182  cmin 11520   / cdiv 11947  t crest 17480  TopOpenctopn 17481  fldccnfld 21387  intcnt 23046   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvaddf  25999  dvmulf  26000  dvcmulf  26002  dvcof  26006  dvmptres2  26020  dvmptcmul  26022  dvmptcj  26026  dvcnvlem  26034  dvcnv  26035  dvef  26038  dvcnvrelem1  26076  dvcnvrelem2  26077  dvcnvre  26078  ulmdvlem1  26461  ulmdvlem3  26463  ulmdv  26464  fperdvper  45840  dvmulcncf  45846  dvdivcncf  45848
  Copyright terms: Public domain W3C validator