Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvbsss | Structured version Visualization version GIF version |
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
dvbsss | ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dv 24974 | . . . . . . . . . . 11 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
2 | 1 | reldmmpo 7391 | . . . . . . . . . 10 ⊢ Rel dom D |
3 | df-rel 5592 | . . . . . . . . . 10 ⊢ (Rel dom D ↔ dom D ⊆ (V × V)) | |
4 | 2, 3 | mpbi 229 | . . . . . . . . 9 ⊢ dom D ⊆ (V × V) |
5 | 4 | sseli 3918 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 〈𝑆, 𝐹〉 ∈ (V × V)) |
6 | opelxp1 5626 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ (V × V) → 𝑆 ∈ V) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ V) |
8 | opeq1 4806 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → 〈𝑠, 𝐹〉 = 〈𝑆, 𝐹〉) | |
9 | 8 | eleq1d 2821 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (〈𝑠, 𝐹〉 ∈ dom D ↔ 〈𝑆, 𝐹〉 ∈ dom D )) |
10 | eleq1 2824 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ)) | |
11 | oveq2 7268 | . . . . . . . . . . 11 ⊢ (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆)) | |
12 | 11 | eleq2d 2822 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
13 | 10, 12 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
14 | 9, 13 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))) |
15 | 1 | dmmpossx 7884 | . . . . . . . . . 10 ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) |
16 | 15 | sseli 3918 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → 〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))) |
17 | opeliunxp 5650 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) | |
18 | 16, 17 | sylib 217 | . . . . . . . 8 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) |
19 | 14, 18 | vtoclg 3500 | . . . . . . 7 ⊢ (𝑆 ∈ V → (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
20 | 7, 19 | mpcom 38 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
21 | 20 | simpld 494 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ) |
22 | 21 | elpwid 4546 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ⊆ ℂ) |
23 | 20 | simprd 495 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
24 | cnex 10899 | . . . . . . 7 ⊢ ℂ ∈ V | |
25 | elpm2g 8595 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) | |
26 | 24, 21, 25 | sylancr 586 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) |
27 | 23, 26 | mpbid 231 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
28 | 27 | simpld 494 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹:dom 𝐹⟶ℂ) |
29 | 27 | simprd 495 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom 𝐹 ⊆ 𝑆) |
30 | 22, 28, 29 | dvbss 25008 | . . 3 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹) |
31 | 30, 29 | sstrd 3932 | . 2 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
32 | df-ov 7263 | . . . . . 6 ⊢ (𝑆 D 𝐹) = ( D ‘〈𝑆, 𝐹〉) | |
33 | ndmfv 6791 | . . . . . 6 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → ( D ‘〈𝑆, 𝐹〉) = ∅) | |
34 | 32, 33 | eqtrid 2789 | . . . . 5 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → (𝑆 D 𝐹) = ∅) |
35 | 34 | dmeqd 5808 | . . . 4 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = dom ∅) |
36 | dm0 5823 | . . . 4 ⊢ dom ∅ = ∅ | |
37 | 35, 36 | eqtrdi 2793 | . . 3 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = ∅) |
38 | 0ss 4332 | . . 3 ⊢ ∅ ⊆ 𝑆 | |
39 | 37, 38 | eqsstrdi 3976 | . 2 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
40 | 31, 39 | pm2.61i 182 | 1 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3427 ∖ cdif 3885 ⊆ wss 3888 ∅c0 4258 𝒫 cpw 4535 {csn 4563 〈cop 4569 ∪ ciun 4926 ↦ cmpt 5158 × cxp 5583 dom cdm 5585 Rel wrel 5590 ⟶wf 6419 ‘cfv 6423 (class class class)co 7260 ↑pm cpm 8579 ℂcc 10816 − cmin 11151 / cdiv 11578 ↾t crest 17075 TopOpenctopn 17076 ℂfldccnfld 20541 intcnt 22112 limℂ climc 24969 D cdv 24970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-pre-sup 10896 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-map 8580 df-pm 8581 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-fi 9116 df-sup 9147 df-inf 9148 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-div 11579 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-7 11987 df-8 11988 df-9 11989 df-n0 12180 df-z 12266 df-dec 12383 df-uz 12528 df-q 12634 df-rp 12676 df-xneg 12793 df-xadd 12794 df-xmul 12795 df-fz 13185 df-seq 13666 df-exp 13727 df-cj 14754 df-re 14755 df-im 14756 df-sqrt 14890 df-abs 14891 df-struct 16792 df-slot 16827 df-ndx 16839 df-base 16857 df-plusg 16919 df-mulr 16920 df-starv 16921 df-tset 16925 df-ple 16926 df-ds 16928 df-unif 16929 df-rest 17077 df-topn 17078 df-topgen 17098 df-psmet 20533 df-xmet 20534 df-met 20535 df-bl 20536 df-mopn 20537 df-cnfld 20542 df-top 21987 df-topon 22004 df-topsp 22026 df-bases 22040 df-ntr 22115 df-cnp 22323 df-xms 23417 df-ms 23418 df-limc 24973 df-dv 24974 |
This theorem is referenced by: dvaddf 25049 dvmulf 25050 dvcmulf 25052 dvcof 25055 dvmptres2 25069 dvmptcmul 25071 dvmptcj 25075 dvcnvlem 25083 dvcnv 25084 dvef 25087 dvcnvrelem1 25124 dvcnvrelem2 25125 dvcnvre 25126 ulmdvlem1 25502 ulmdvlem3 25504 ulmdv 25505 fperdvper 43392 dvmulcncf 43398 dvdivcncf 43400 |
Copyright terms: Public domain | W3C validator |