![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvbsss | Structured version Visualization version GIF version |
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
dvbsss | ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dv 25917 | . . . . . . . . . . 11 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
2 | 1 | reldmmpo 7567 | . . . . . . . . . 10 ⊢ Rel dom D |
3 | df-rel 5696 | . . . . . . . . . 10 ⊢ (Rel dom D ↔ dom D ⊆ (V × V)) | |
4 | 2, 3 | mpbi 230 | . . . . . . . . 9 ⊢ dom D ⊆ (V × V) |
5 | 4 | sseli 3991 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 〈𝑆, 𝐹〉 ∈ (V × V)) |
6 | opelxp1 5731 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ (V × V) → 𝑆 ∈ V) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ V) |
8 | opeq1 4878 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → 〈𝑠, 𝐹〉 = 〈𝑆, 𝐹〉) | |
9 | 8 | eleq1d 2824 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (〈𝑠, 𝐹〉 ∈ dom D ↔ 〈𝑆, 𝐹〉 ∈ dom D )) |
10 | eleq1 2827 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ)) | |
11 | oveq2 7439 | . . . . . . . . . . 11 ⊢ (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆)) | |
12 | 11 | eleq2d 2825 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
13 | 10, 12 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
14 | 9, 13 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))) |
15 | 1 | dmmpossx 8090 | . . . . . . . . . 10 ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) |
16 | 15 | sseli 3991 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → 〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))) |
17 | opeliunxp 5756 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) | |
18 | 16, 17 | sylib 218 | . . . . . . . 8 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) |
19 | 14, 18 | vtoclg 3554 | . . . . . . 7 ⊢ (𝑆 ∈ V → (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
20 | 7, 19 | mpcom 38 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
21 | 20 | simpld 494 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ) |
22 | 21 | elpwid 4614 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ⊆ ℂ) |
23 | 20 | simprd 495 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
24 | cnex 11234 | . . . . . . 7 ⊢ ℂ ∈ V | |
25 | elpm2g 8883 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) | |
26 | 24, 21, 25 | sylancr 587 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) |
27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
28 | 27 | simpld 494 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹:dom 𝐹⟶ℂ) |
29 | 27 | simprd 495 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom 𝐹 ⊆ 𝑆) |
30 | 22, 28, 29 | dvbss 25951 | . . 3 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹) |
31 | 30, 29 | sstrd 4006 | . 2 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
32 | df-ov 7434 | . . . . . 6 ⊢ (𝑆 D 𝐹) = ( D ‘〈𝑆, 𝐹〉) | |
33 | ndmfv 6942 | . . . . . 6 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → ( D ‘〈𝑆, 𝐹〉) = ∅) | |
34 | 32, 33 | eqtrid 2787 | . . . . 5 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → (𝑆 D 𝐹) = ∅) |
35 | 34 | dmeqd 5919 | . . . 4 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = dom ∅) |
36 | dm0 5934 | . . . 4 ⊢ dom ∅ = ∅ | |
37 | 35, 36 | eqtrdi 2791 | . . 3 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = ∅) |
38 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ 𝑆 | |
39 | 37, 38 | eqsstrdi 4050 | . 2 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
40 | 31, 39 | pm2.61i 182 | 1 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 〈cop 4637 ∪ ciun 4996 ↦ cmpt 5231 × cxp 5687 dom cdm 5689 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑pm cpm 8866 ℂcc 11151 − cmin 11490 / cdiv 11918 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 intcnt 23041 limℂ climc 25912 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-ntr 23044 df-cnp 23252 df-xms 24346 df-ms 24347 df-limc 25916 df-dv 25917 |
This theorem is referenced by: dvaddf 25994 dvmulf 25995 dvcmulf 25997 dvcof 26001 dvmptres2 26015 dvmptcmul 26017 dvmptcj 26021 dvcnvlem 26029 dvcnv 26030 dvef 26033 dvcnvrelem1 26071 dvcnvrelem2 26072 dvcnvre 26073 ulmdvlem1 26458 ulmdvlem3 26460 ulmdv 26461 fperdvper 45875 dvmulcncf 45881 dvdivcncf 45883 |
Copyright terms: Public domain | W3C validator |