| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvbsss | Structured version Visualization version GIF version | ||
| Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| dvbsss | ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dv 25785 | . . . . . . . . . . 11 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
| 2 | 1 | reldmmpo 7487 | . . . . . . . . . 10 ⊢ Rel dom D |
| 3 | df-rel 5630 | . . . . . . . . . 10 ⊢ (Rel dom D ↔ dom D ⊆ (V × V)) | |
| 4 | 2, 3 | mpbi 230 | . . . . . . . . 9 ⊢ dom D ⊆ (V × V) |
| 5 | 4 | sseli 3933 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 〈𝑆, 𝐹〉 ∈ (V × V)) |
| 6 | opelxp1 5665 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ (V × V) → 𝑆 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ V) |
| 8 | opeq1 4827 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → 〈𝑠, 𝐹〉 = 〈𝑆, 𝐹〉) | |
| 9 | 8 | eleq1d 2813 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (〈𝑠, 𝐹〉 ∈ dom D ↔ 〈𝑆, 𝐹〉 ∈ dom D )) |
| 10 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ)) | |
| 11 | oveq2 7361 | . . . . . . . . . . 11 ⊢ (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆)) | |
| 12 | 11 | eleq2d 2814 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
| 13 | 10, 12 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
| 14 | 9, 13 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))) |
| 15 | 1 | dmmpossx 8008 | . . . . . . . . . 10 ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) |
| 16 | 15 | sseli 3933 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → 〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))) |
| 17 | opeliunxp 5690 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . 8 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) |
| 19 | 14, 18 | vtoclg 3511 | . . . . . . 7 ⊢ (𝑆 ∈ V → (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
| 20 | 7, 19 | mpcom 38 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
| 21 | 20 | simpld 494 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ) |
| 22 | 21 | elpwid 4562 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ⊆ ℂ) |
| 23 | 20 | simprd 495 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 24 | cnex 11109 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 25 | elpm2g 8778 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) | |
| 26 | 24, 21, 25 | sylancr 587 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) |
| 27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹:dom 𝐹⟶ℂ) |
| 29 | 27 | simprd 495 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom 𝐹 ⊆ 𝑆) |
| 30 | 22, 28, 29 | dvbss 25819 | . . 3 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹) |
| 31 | 30, 29 | sstrd 3948 | . 2 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
| 32 | df-ov 7356 | . . . . . 6 ⊢ (𝑆 D 𝐹) = ( D ‘〈𝑆, 𝐹〉) | |
| 33 | ndmfv 6859 | . . . . . 6 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → ( D ‘〈𝑆, 𝐹〉) = ∅) | |
| 34 | 32, 33 | eqtrid 2776 | . . . . 5 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → (𝑆 D 𝐹) = ∅) |
| 35 | 34 | dmeqd 5852 | . . . 4 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = dom ∅) |
| 36 | dm0 5867 | . . . 4 ⊢ dom ∅ = ∅ | |
| 37 | 35, 36 | eqtrdi 2780 | . . 3 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = ∅) |
| 38 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝑆 | |
| 39 | 37, 38 | eqsstrdi 3982 | . 2 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
| 40 | 31, 39 | pm2.61i 182 | 1 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 〈cop 4585 ∪ ciun 4944 ↦ cmpt 5176 × cxp 5621 dom cdm 5623 Rel wrel 5628 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 − cmin 11366 / cdiv 11796 ↾t crest 17343 TopOpenctopn 17344 ℂfldccnfld 21280 intcnt 22921 limℂ climc 25780 D cdv 25781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-fz 13430 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-mulr 17194 df-starv 17195 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-rest 17345 df-topn 17346 df-topgen 17366 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-ntr 22924 df-cnp 23132 df-xms 24225 df-ms 24226 df-limc 25784 df-dv 25785 |
| This theorem is referenced by: dvaddf 25862 dvmulf 25863 dvcmulf 25865 dvcof 25869 dvmptres2 25883 dvmptcmul 25885 dvmptcj 25889 dvcnvlem 25897 dvcnv 25898 dvef 25901 dvcnvrelem1 25939 dvcnvrelem2 25940 dvcnvre 25941 ulmdvlem1 26326 ulmdvlem3 26328 ulmdv 26329 fperdvper 45920 dvmulcncf 45926 dvdivcncf 45928 |
| Copyright terms: Public domain | W3C validator |