MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbsss Structured version   Visualization version   GIF version

Theorem dvbsss 25825
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
dvbsss dom (𝑆 D 𝐹) ⊆ 𝑆

Proof of Theorem dvbsss
Dummy variables 𝑓 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 25790 . . . . . . . . . . 11 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21reldmmpo 7475 . . . . . . . . . 10 Rel dom D
3 df-rel 5618 . . . . . . . . . 10 (Rel dom D ↔ dom D ⊆ (V × V))
42, 3mpbi 230 . . . . . . . . 9 dom D ⊆ (V × V)
54sseli 3925 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ (V × V))
6 opelxp1 5653 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ (V × V) → 𝑆 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ V)
8 opeq1 4820 . . . . . . . . . 10 (𝑠 = 𝑆 → ⟨𝑠, 𝐹⟩ = ⟨𝑆, 𝐹⟩)
98eleq1d 2816 . . . . . . . . 9 (𝑠 = 𝑆 → (⟨𝑠, 𝐹⟩ ∈ dom D ↔ ⟨𝑆, 𝐹⟩ ∈ dom D ))
10 eleq1 2819 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ))
11 oveq2 7349 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
1211eleq2d 2817 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1310, 12anbi12d 632 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
149, 13imbi12d 344 . . . . . . . 8 (𝑠 = 𝑆 → ((⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))))
151dmmpossx 7993 . . . . . . . . . 10 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
1615sseli 3925 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ dom D → ⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
17 opeliunxp 5678 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1816, 17sylib 218 . . . . . . . 8 (⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1914, 18vtoclg 3507 . . . . . . 7 (𝑆 ∈ V → (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
207, 19mpcom 38 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
2120simpld 494 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
2221elpwid 4554 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ⊆ ℂ)
2320simprd 495 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
24 cnex 11082 . . . . . . 7 ℂ ∈ V
25 elpm2g 8763 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2624, 21, 25sylancr 587 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2723, 26mpbid 232 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2827simpld 494 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹:dom 𝐹⟶ℂ)
2927simprd 495 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
3022, 28, 29dvbss 25824 . . 3 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹)
3130, 29sstrd 3940 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
32 df-ov 7344 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
33 ndmfv 6849 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
3432, 33eqtrid 2778 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
3534dmeqd 5840 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
36 dm0 5855 . . . 4 dom ∅ = ∅
3735, 36eqtrdi 2782 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
38 0ss 4345 . . 3 ∅ ⊆ 𝑆
3937, 38eqsstrdi 3974 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
4031, 39pm2.61i 182 1 dom (𝑆 D 𝐹) ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571  cop 4577   ciun 4936  cmpt 5167   × cxp 5609  dom cdm 5611  Rel wrel 5616  wf 6472  cfv 6476  (class class class)co 7341  pm cpm 8746  cc 10999  cmin 11339   / cdiv 11769  t crest 17319  TopOpenctopn 17320  fldccnfld 21286  intcnt 22927   lim climc 25785   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-rest 17321  df-topn 17322  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-ntr 22930  df-cnp 23138  df-xms 24230  df-ms 24231  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvaddf  25867  dvmulf  25868  dvcmulf  25870  dvcof  25874  dvmptres2  25888  dvmptcmul  25890  dvmptcj  25894  dvcnvlem  25902  dvcnv  25903  dvef  25906  dvcnvrelem1  25944  dvcnvrelem2  25945  dvcnvre  25946  ulmdvlem1  26331  ulmdvlem3  26333  ulmdv  26334  fperdvper  45957  dvmulcncf  45963  dvdivcncf  45965
  Copyright terms: Public domain W3C validator