MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbsss Structured version   Visualization version   GIF version

Theorem dvbsss 24484
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
dvbsss dom (𝑆 D 𝐹) ⊆ 𝑆

Proof of Theorem dvbsss
Dummy variables 𝑓 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 24449 . . . . . . . . . . 11 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21reldmmpo 7262 . . . . . . . . . 10 Rel dom D
3 df-rel 5538 . . . . . . . . . 10 (Rel dom D ↔ dom D ⊆ (V × V))
42, 3mpbi 232 . . . . . . . . 9 dom D ⊆ (V × V)
54sseli 3942 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ (V × V))
6 opelxp1 5572 . . . . . . . 8 (⟨𝑆, 𝐹⟩ ∈ (V × V) → 𝑆 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ V)
8 opeq1 4779 . . . . . . . . . 10 (𝑠 = 𝑆 → ⟨𝑠, 𝐹⟩ = ⟨𝑆, 𝐹⟩)
98eleq1d 2895 . . . . . . . . 9 (𝑠 = 𝑆 → (⟨𝑠, 𝐹⟩ ∈ dom D ↔ ⟨𝑆, 𝐹⟩ ∈ dom D ))
10 eleq1 2898 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ))
11 oveq2 7141 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
1211eleq2d 2896 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1310, 12anbi12d 632 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
149, 13imbi12d 347 . . . . . . . 8 (𝑠 = 𝑆 → ((⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))))
151dmmpossx 7742 . . . . . . . . . 10 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
1615sseli 3942 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ dom D → ⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
17 opeliunxp 5595 . . . . . . . . 9 (⟨𝑠, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1816, 17sylib 220 . . . . . . . 8 (⟨𝑠, 𝐹⟩ ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)))
1914, 18vtoclg 3546 . . . . . . 7 (𝑆 ∈ V → (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))
207, 19mpcom 38 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
2120simpld 497 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
2221elpwid 4526 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ⊆ ℂ)
2320simprd 498 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
24 cnex 10596 . . . . . . 7 ℂ ∈ V
25 elpm2g 8401 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2624, 21, 25sylancr 589 . . . . . 6 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2723, 26mpbid 234 . . . . 5 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2827simpld 497 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹:dom 𝐹⟶ℂ)
2927simprd 498 . . . 4 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
3022, 28, 29dvbss 24483 . . 3 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹)
3130, 29sstrd 3956 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
32 df-ov 7136 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
33 ndmfv 6676 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
3432, 33syl5eq 2867 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
3534dmeqd 5750 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
36 dm0 5766 . . . 4 dom ∅ = ∅
3735, 36syl6eq 2871 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
38 0ss 4326 . . 3 ∅ ⊆ 𝑆
3937, 38eqsstrdi 4000 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆)
4031, 39pm2.61i 184 1 dom (𝑆 D 𝐹) ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3473  cdif 3910  wss 3913  c0 4269  𝒫 cpw 4515  {csn 4543  cop 4549   ciun 4895  cmpt 5122   × cxp 5529  dom cdm 5531  Rel wrel 5536  wf 6327  cfv 6331  (class class class)co 7133  pm cpm 8385  cc 10513  cmin 10848   / cdiv 11275  t crest 16673  TopOpenctopn 16674  fldccnfld 20521  intcnt 21601   lim climc 24444   D cdv 24445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-pm 8387  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fi 8853  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-fz 12877  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-starv 16559  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-rest 16675  df-topn 16676  df-topgen 16696  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-ntr 21604  df-cnp 21812  df-xms 22906  df-ms 22907  df-limc 24448  df-dv 24449
This theorem is referenced by:  dvaddf  24524  dvmulf  24525  dvcmulf  24527  dvcof  24530  dvmptres2  24544  dvmptcmul  24546  dvmptcj  24550  dvcnvlem  24558  dvcnv  24559  dvef  24562  dvcnvrelem1  24599  dvcnvrelem2  24600  dvcnvre  24601  ulmdvlem1  24974  ulmdvlem3  24976  ulmdv  24977  fperdvper  42352  dvmulcncf  42358  dvdivcncf  42360
  Copyright terms: Public domain W3C validator