![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvbsss | Structured version Visualization version GIF version |
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
dvbsss | ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dv 25922 | . . . . . . . . . . 11 ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | |
2 | 1 | reldmmpo 7584 | . . . . . . . . . 10 ⊢ Rel dom D |
3 | df-rel 5707 | . . . . . . . . . 10 ⊢ (Rel dom D ↔ dom D ⊆ (V × V)) | |
4 | 2, 3 | mpbi 230 | . . . . . . . . 9 ⊢ dom D ⊆ (V × V) |
5 | 4 | sseli 4004 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 〈𝑆, 𝐹〉 ∈ (V × V)) |
6 | opelxp1 5742 | . . . . . . . 8 ⊢ (〈𝑆, 𝐹〉 ∈ (V × V) → 𝑆 ∈ V) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ V) |
8 | opeq1 4897 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → 〈𝑠, 𝐹〉 = 〈𝑆, 𝐹〉) | |
9 | 8 | eleq1d 2829 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (〈𝑠, 𝐹〉 ∈ dom D ↔ 〈𝑆, 𝐹〉 ∈ dom D )) |
10 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ)) | |
11 | oveq2 7456 | . . . . . . . . . . 11 ⊢ (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆)) | |
12 | 11 | eleq2d 2830 | . . . . . . . . . 10 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (ℂ ↑pm 𝑠) ↔ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
13 | 10, 12 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
14 | 9, 13 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → ((〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) ↔ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))))) |
15 | 1 | dmmpossx 8107 | . . . . . . . . . 10 ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) |
16 | 15 | sseli 4004 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → 〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))) |
17 | opeliunxp 5767 | . . . . . . . . 9 ⊢ (〈𝑠, 𝐹〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) | |
18 | 16, 17 | sylib 218 | . . . . . . . 8 ⊢ (〈𝑠, 𝐹〉 ∈ dom D → (𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑠))) |
19 | 14, 18 | vtoclg 3566 | . . . . . . 7 ⊢ (𝑆 ∈ V → (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))) |
20 | 7, 19 | mpcom 38 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆))) |
21 | 20 | simpld 494 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ) |
22 | 21 | elpwid 4631 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝑆 ⊆ ℂ) |
23 | 20 | simprd 495 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
24 | cnex 11265 | . . . . . . 7 ⊢ ℂ ∈ V | |
25 | elpm2g 8902 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) | |
26 | 24, 21, 25 | sylancr 586 | . . . . . 6 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆))) |
27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
28 | 27 | simpld 494 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → 𝐹:dom 𝐹⟶ℂ) |
29 | 27 | simprd 495 | . . . 4 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom 𝐹 ⊆ 𝑆) |
30 | 22, 28, 29 | dvbss 25956 | . . 3 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ dom 𝐹) |
31 | 30, 29 | sstrd 4019 | . 2 ⊢ (〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
32 | df-ov 7451 | . . . . . 6 ⊢ (𝑆 D 𝐹) = ( D ‘〈𝑆, 𝐹〉) | |
33 | ndmfv 6955 | . . . . . 6 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → ( D ‘〈𝑆, 𝐹〉) = ∅) | |
34 | 32, 33 | eqtrid 2792 | . . . . 5 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → (𝑆 D 𝐹) = ∅) |
35 | 34 | dmeqd 5930 | . . . 4 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = dom ∅) |
36 | dm0 5945 | . . . 4 ⊢ dom ∅ = ∅ | |
37 | 35, 36 | eqtrdi 2796 | . . 3 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) = ∅) |
38 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝑆 | |
39 | 37, 38 | eqsstrdi 4063 | . 2 ⊢ (¬ 〈𝑆, 𝐹〉 ∈ dom D → dom (𝑆 D 𝐹) ⊆ 𝑆) |
40 | 31, 39 | pm2.61i 182 | 1 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 〈cop 4654 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 − cmin 11520 / cdiv 11947 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 intcnt 23046 limℂ climc 25917 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-cnp 23257 df-xms 24351 df-ms 24352 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvaddf 25999 dvmulf 26000 dvcmulf 26002 dvcof 26006 dvmptres2 26020 dvmptcmul 26022 dvmptcj 26026 dvcnvlem 26034 dvcnv 26035 dvef 26038 dvcnvrelem1 26076 dvcnvrelem2 26077 dvcnvre 26078 ulmdvlem1 26461 ulmdvlem3 26463 ulmdv 26464 fperdvper 45840 dvmulcncf 45846 dvdivcncf 45848 |
Copyright terms: Public domain | W3C validator |