Detailed syntax breakdown of Definition df-dvds
Step | Hyp | Ref
| Expression |
1 | | cdvds 15891 |
. 2
class
∥ |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
4 | | cz 12249 |
. . . . . 6
class
ℤ |
5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℤ |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑦 |
8 | 7, 4 | wcel 2108 |
. . . . 5
wff 𝑦 ∈ ℤ |
9 | 5, 8 | wa 395 |
. . . 4
wff (𝑥 ∈ ℤ ∧ 𝑦 ∈
ℤ) |
10 | | vn |
. . . . . . . 8
setvar 𝑛 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑛 |
12 | | cmul 10807 |
. . . . . . 7
class
· |
13 | 11, 3, 12 | co 7255 |
. . . . . 6
class (𝑛 · 𝑥) |
14 | 13, 7 | wceq 1539 |
. . . . 5
wff (𝑛 · 𝑥) = 𝑦 |
15 | 14, 10, 4 | wrex 3064 |
. . . 4
wff
∃𝑛 ∈
ℤ (𝑛 · 𝑥) = 𝑦 |
16 | 9, 15 | wa 395 |
. . 3
wff ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦) |
17 | 16, 2, 6 | copab 5132 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦)} |
18 | 1, 17 | wceq 1539 |
1
wff ∥ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦)} |