Detailed syntax breakdown of Definition df-dvds
| Step | Hyp | Ref
| Expression |
| 1 | | cdvds 16290 |
. 2
class
∥ |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 4 | | cz 12613 |
. . . . . 6
class
ℤ |
| 5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℤ |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 2108 |
. . . . 5
wff 𝑦 ∈ ℤ |
| 9 | 5, 8 | wa 395 |
. . . 4
wff (𝑥 ∈ ℤ ∧ 𝑦 ∈
ℤ) |
| 10 | | vn |
. . . . . . . 8
setvar 𝑛 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 12 | | cmul 11160 |
. . . . . . 7
class
· |
| 13 | 11, 3, 12 | co 7431 |
. . . . . 6
class (𝑛 · 𝑥) |
| 14 | 13, 7 | wceq 1540 |
. . . . 5
wff (𝑛 · 𝑥) = 𝑦 |
| 15 | 14, 10, 4 | wrex 3070 |
. . . 4
wff
∃𝑛 ∈
ℤ (𝑛 · 𝑥) = 𝑦 |
| 16 | 9, 15 | wa 395 |
. . 3
wff ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦) |
| 17 | 16, 2, 6 | copab 5205 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦)} |
| 18 | 1, 17 | wceq 1540 |
1
wff ∥ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧
∃𝑛 ∈ ℤ
(𝑛 · 𝑥) = 𝑦)} |