MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divides Structured version   Visualization version   GIF version

Theorem divides 16203
Description: Define the divides relation. ๐‘€ โˆฅ ๐‘ means ๐‘€ divides into ๐‘ with no remainder. For example, 3 โˆฅ 6 (ex-dvds 29976). As proven in dvdsval3 16205, ๐‘€ โˆฅ ๐‘ โ†” (๐‘ mod ๐‘€) = 0. See divides 16203 and dvdsval2 16204 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divides ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘))
Distinct variable groups:   ๐‘›,๐‘€   ๐‘›,๐‘

Proof of Theorem divides
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5148 . . 3 (๐‘€ โˆฅ ๐‘ โ†” โŸจ๐‘€, ๐‘โŸฉ โˆˆ โˆฅ )
2 df-dvds 16202 . . . 4 โˆฅ = {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘ฅ) = ๐‘ฆ)}
32eleq2i 2823 . . 3 (โŸจ๐‘€, ๐‘โŸฉ โˆˆ โˆฅ โ†” โŸจ๐‘€, ๐‘โŸฉ โˆˆ {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘ฅ) = ๐‘ฆ)})
41, 3bitri 274 . 2 (๐‘€ โˆฅ ๐‘ โ†” โŸจ๐‘€, ๐‘โŸฉ โˆˆ {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘ฅ) = ๐‘ฆ)})
5 oveq2 7419 . . . . 5 (๐‘ฅ = ๐‘€ โ†’ (๐‘› ยท ๐‘ฅ) = (๐‘› ยท ๐‘€))
65eqeq1d 2732 . . . 4 (๐‘ฅ = ๐‘€ โ†’ ((๐‘› ยท ๐‘ฅ) = ๐‘ฆ โ†” (๐‘› ยท ๐‘€) = ๐‘ฆ))
76rexbidv 3176 . . 3 (๐‘ฅ = ๐‘€ โ†’ (โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘ฅ) = ๐‘ฆ โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘ฆ))
8 eqeq2 2742 . . . 4 (๐‘ฆ = ๐‘ โ†’ ((๐‘› ยท ๐‘€) = ๐‘ฆ โ†” (๐‘› ยท ๐‘€) = ๐‘))
98rexbidv 3176 . . 3 (๐‘ฆ = ๐‘ โ†’ (โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘ฆ โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘))
107, 9opelopab2 5540 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (โŸจ๐‘€, ๐‘โŸฉ โˆˆ {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘ฅ) = ๐‘ฆ)} โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘))
114, 10bitrid 282 1 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท ๐‘€) = ๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   = wceq 1539   โˆˆ wcel 2104  โˆƒwrex 3068  โŸจcop 4633   class class class wbr 5147  {copab 5209  (class class class)co 7411   ยท cmul 11117  โ„คcz 12562   โˆฅ cdvds 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6494  df-fv 6550  df-ov 7414  df-dvds 16202
This theorem is referenced by:  dvdsval2  16204  dvds0lem  16214  dvds1lem  16215  dvds2lem  16216  0dvds  16224  dvdsle  16257  divconjdvds  16262  dvdsexp2im  16274  odd2np1  16288  even2n  16289  oddm1even  16290  opeo  16312  omeo  16313  m1exp1  16323  divalglem4  16343  divalglem9  16348  divalgb  16351  modremain  16355  zeqzmulgcd  16455  bezoutlem4  16488  gcddiv  16497  dvdssqim  16500  coprmdvds2  16595  congr  16605  divgcdcoprm0  16606  cncongr2  16609  dvdsnprmd  16631  prmpwdvds  16841  odmulg  19465  gexdvdsi  19492  lgsquadlem2  27120  dvdsexpim  41521  dvdsrabdioph  41850  jm2.26a  42041  coskpi2  44880  cosknegpi  44883  fourierswlem  45244  dfeven2  46615
  Copyright terms: Public domain W3C validator