MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divides Structured version   Visualization version   GIF version

Theorem divides 16171
Description: Define the divides relation. 𝑀𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 30443). As proven in dvdsval3 16173, 𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 16171 and dvdsval2 16172 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divides ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem divides
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5094 . . 3 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ∥ )
2 df-dvds 16170 . . . 4 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
32eleq2i 2823 . . 3 (⟨𝑀, 𝑁⟩ ∈ ∥ ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
41, 3bitri 275 . 2 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
5 oveq2 7360 . . . . 5 (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀))
65eqeq1d 2733 . . . 4 (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦))
76rexbidv 3156 . . 3 (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦))
8 eqeq2 2743 . . . 4 (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁))
98rexbidv 3156 . . 3 (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
107, 9opelopab2 5484 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
114, 10bitrid 283 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cop 4581   class class class wbr 5093  {copab 5155  (class class class)co 7352   · cmul 11017  cz 12474  cdvds 16169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-iota 6443  df-fv 6495  df-ov 7355  df-dvds 16170
This theorem is referenced by:  dvdsval2  16172  dvds0lem  16183  dvds1lem  16184  dvds2lem  16185  0dvds  16193  dvdsle  16227  divconjdvds  16232  dvdsexp2im  16244  odd2np1  16258  even2n  16259  oddm1even  16260  opeo  16282  omeo  16283  m1exp1  16293  divalglem4  16313  divalglem9  16318  divalgb  16321  modremain  16325  zeqzmulgcd  16427  bezoutlem4  16459  gcddiv  16468  dvdssqim  16471  dvdsexpim  16472  coprmdvds2  16571  congr  16581  divgcdcoprm0  16582  cncongr2  16585  dvdsnprmd  16607  prmpwdvds  16822  odmulg  19474  gexdvdsi  19501  lgsquadlem2  27325  primrootspoweq0  42205  aks6d1c2  42229  grpods  42293  unitscyglem4  42297  dvdsrabdioph  42908  jm2.26a  43098  coskpi2  45969  cosknegpi  45972  fourierswlem  46333  dfeven2  47754
  Copyright terms: Public domain W3C validator