| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divides | Structured version Visualization version GIF version | ||
| Description: Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 30418). As proven in dvdsval3 16185, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 16183 and dvdsval2 16184 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divides | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5096 | . . 3 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ∥ ) | |
| 2 | df-dvds 16182 | . . . 4 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (〈𝑀, 𝑁〉 ∈ ∥ ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 5 | oveq2 7361 | . . . . 5 ⊢ (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀)) | |
| 6 | 5 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦)) |
| 7 | 6 | rexbidv 3153 | . . 3 ⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦)) |
| 8 | eqeq2 2741 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁)) | |
| 9 | 8 | rexbidv 3153 | . . 3 ⊢ (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 10 | 7, 9 | opelopab2 5488 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 11 | 4, 10 | bitrid 283 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4585 class class class wbr 5095 {copab 5157 (class class class)co 7353 · cmul 11033 ℤcz 12489 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-iota 6442 df-fv 6494 df-ov 7356 df-dvds 16182 |
| This theorem is referenced by: dvdsval2 16184 dvds0lem 16195 dvds1lem 16196 dvds2lem 16197 0dvds 16205 dvdsle 16239 divconjdvds 16244 dvdsexp2im 16256 odd2np1 16270 even2n 16271 oddm1even 16272 opeo 16294 omeo 16295 m1exp1 16305 divalglem4 16325 divalglem9 16330 divalgb 16333 modremain 16337 zeqzmulgcd 16439 bezoutlem4 16471 gcddiv 16480 dvdssqim 16483 dvdsexpim 16484 coprmdvds2 16583 congr 16593 divgcdcoprm0 16594 cncongr2 16597 dvdsnprmd 16619 prmpwdvds 16834 odmulg 19453 gexdvdsi 19480 lgsquadlem2 27308 primrootspoweq0 42079 aks6d1c2 42103 grpods 42167 unitscyglem4 42171 dvdsrabdioph 42783 jm2.26a 42973 coskpi2 45848 cosknegpi 45851 fourierswlem 46212 dfeven2 47634 |
| Copyright terms: Public domain | W3C validator |