| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divides | Structured version Visualization version GIF version | ||
| Description: Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 30426). As proven in dvdsval3 16159, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 16157 and dvdsval2 16158 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divides | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . . 3 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ∥ ) | |
| 2 | df-dvds 16156 | . . . 4 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | |
| 3 | 2 | eleq2i 2821 | . . 3 ⊢ (〈𝑀, 𝑁〉 ∈ ∥ ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 5 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀)) | |
| 6 | 5 | eqeq1d 2732 | . . . 4 ⊢ (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦)) |
| 7 | 6 | rexbidv 3154 | . . 3 ⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦)) |
| 8 | eqeq2 2742 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁)) | |
| 9 | 8 | rexbidv 3154 | . . 3 ⊢ (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 10 | 7, 9 | opelopab2 5479 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 11 | 4, 10 | bitrid 283 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 〈cop 4580 class class class wbr 5089 {copab 5151 (class class class)co 7341 · cmul 11003 ℤcz 12460 ∥ cdvds 16155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-iota 6433 df-fv 6485 df-ov 7344 df-dvds 16156 |
| This theorem is referenced by: dvdsval2 16158 dvds0lem 16169 dvds1lem 16170 dvds2lem 16171 0dvds 16179 dvdsle 16213 divconjdvds 16218 dvdsexp2im 16230 odd2np1 16244 even2n 16245 oddm1even 16246 opeo 16268 omeo 16269 m1exp1 16279 divalglem4 16299 divalglem9 16304 divalgb 16307 modremain 16311 zeqzmulgcd 16413 bezoutlem4 16445 gcddiv 16454 dvdssqim 16457 dvdsexpim 16458 coprmdvds2 16557 congr 16567 divgcdcoprm0 16568 cncongr2 16571 dvdsnprmd 16593 prmpwdvds 16808 odmulg 19461 gexdvdsi 19488 lgsquadlem2 27312 primrootspoweq0 42118 aks6d1c2 42142 grpods 42206 unitscyglem4 42210 dvdsrabdioph 42822 jm2.26a 43012 coskpi2 45883 cosknegpi 45886 fourierswlem 46247 dfeven2 47659 |
| Copyright terms: Public domain | W3C validator |