| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divides | Structured version Visualization version GIF version | ||
| Description: Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 30443). As proven in dvdsval3 16173, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 16171 and dvdsval2 16172 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divides | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5094 | . . 3 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ∥ ) | |
| 2 | df-dvds 16170 | . . . 4 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | |
| 3 | 2 | eleq2i 2823 | . . 3 ⊢ (〈𝑀, 𝑁〉 ∈ ∥ ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 5 | oveq2 7360 | . . . . 5 ⊢ (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀)) | |
| 6 | 5 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦)) |
| 7 | 6 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦)) |
| 8 | eqeq2 2743 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁)) | |
| 9 | 8 | rexbidv 3156 | . . 3 ⊢ (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 10 | 7, 9 | opelopab2 5484 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 11 | 4, 10 | bitrid 283 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 〈cop 4581 class class class wbr 5093 {copab 5155 (class class class)co 7352 · cmul 11017 ℤcz 12474 ∥ cdvds 16169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-iota 6443 df-fv 6495 df-ov 7355 df-dvds 16170 |
| This theorem is referenced by: dvdsval2 16172 dvds0lem 16183 dvds1lem 16184 dvds2lem 16185 0dvds 16193 dvdsle 16227 divconjdvds 16232 dvdsexp2im 16244 odd2np1 16258 even2n 16259 oddm1even 16260 opeo 16282 omeo 16283 m1exp1 16293 divalglem4 16313 divalglem9 16318 divalgb 16321 modremain 16325 zeqzmulgcd 16427 bezoutlem4 16459 gcddiv 16468 dvdssqim 16471 dvdsexpim 16472 coprmdvds2 16571 congr 16581 divgcdcoprm0 16582 cncongr2 16585 dvdsnprmd 16607 prmpwdvds 16822 odmulg 19474 gexdvdsi 19501 lgsquadlem2 27325 primrootspoweq0 42205 aks6d1c2 42229 grpods 42293 unitscyglem4 42297 dvdsrabdioph 42908 jm2.26a 43098 coskpi2 45969 cosknegpi 45972 fourierswlem 46333 dfeven2 47754 |
| Copyright terms: Public domain | W3C validator |