![]() |
Metamath
Proof Explorer Theorem List (p. 162 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bpolysum 16101* | A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (𝑋↑𝑁)) | ||
Theorem | bpolydiflem 16102* | Lemma for bpolydif 16103. (Contributed by Scott Fenton, 12-Jun-2014.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ⇒ ⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
Theorem | bpolydif 16103 | Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
Theorem | fsumkthpow 16104* | A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛↑𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1))) | ||
Theorem | bpoly2 16105 | The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) | ||
Theorem | bpoly3 16106 | The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) | ||
Theorem | bpoly4 16107 | The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) | ||
Theorem | fsumcube 16108* | Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.) |
⊢ (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4)) | ||
Syntax | ce 16109 | Extend class notation to include the exponential function. |
class exp | ||
Syntax | ceu 16110 | Extend class notation to include Euler's constant e = 2.71828.... |
class e | ||
Syntax | csin 16111 | Extend class notation to include the sine function. |
class sin | ||
Syntax | ccos 16112 | Extend class notation to include the cosine function. |
class cos | ||
Syntax | ctan 16113 | Extend class notation to include the tangent function. |
class tan | ||
Syntax | cpi 16114 | Extend class notation to include the constant pi, π = 3.14159.... |
class π | ||
Definition | df-ef 16115* | Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 16127. (Contributed by NM, 14-Mar-2005.) |
⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | ||
Definition | df-e 16116 | Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
⊢ e = (exp‘1) | ||
Definition | df-sin 16117 | Define the sine function. (Contributed by NM, 14-Mar-2005.) |
⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | ||
Definition | df-cos 16118 | Define the cosine function. (Contributed by NM, 14-Mar-2005.) |
⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | ||
Definition | df-tan 16119 | Define the tangent function. We define it this way for cmpt 5249, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | ||
Definition | df-pi 16120 | Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) | ||
Theorem | eftcl 16121 | Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) | ||
Theorem | reeftcl 16122 | The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) | ||
Theorem | eftabs 16123 | The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) | ||
Theorem | eftval 16124* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
Theorem | efcllem 16125* | Lemma for efcl 16130. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15931 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | ef0lem 16126* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
Theorem | efval 16127* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
Theorem | esum 16128 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
Theorem | eff 16129 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ exp:ℂ⟶ℂ | ||
Theorem | efcl 16130 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
Theorem | efcld 16131 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
Theorem | efval2 16132* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
Theorem | efcvg 16133* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
Theorem | efcvgfsum 16134* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
Theorem | reefcl 16135 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
Theorem | reefcld 16136 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
Theorem | ere 16137 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
⊢ e ∈ ℝ | ||
Theorem | ege2le3 16138 | Lemma for egt2lt3 16254. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
Theorem | ef0 16139 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (exp‘0) = 1 | ||
Theorem | efcj 16140 | The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) | ||
Theorem | efaddlem 16141* | Lemma for efadd 16142 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
Theorem | efadd 16142 | Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
Theorem | fprodefsum 16143* | Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) | ||
Theorem | efcan 16144 | Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) | ||
Theorem | efne0 16145 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
Theorem | efneg 16146 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
Theorem | eff2 16147 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
Theorem | efsub 16148 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
Theorem | efexp 16149 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
Theorem | efzval 16150 | Value of the exponential function for integers. Special case of efval 16127. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
Theorem | efgt0 16151 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
Theorem | rpefcl 16152 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
Theorem | rpefcld 16153 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
Theorem | eftlcvg 16154* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | eftlcl 16155* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
Theorem | reeftlcl 16156* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
Theorem | eftlub 16157* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
Theorem | efsep 16158* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
Theorem | effsumlt 16159* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
Theorem | eft0val 16160 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
Theorem | ef4p 16161* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
Theorem | efgt1p2 16162 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
Theorem | efgt1p 16163 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
Theorem | efgt1 16164 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
Theorem | eflt 16165 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
Theorem | efle 16166 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
Theorem | reef11 16167 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | reeff1 16168 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
Theorem | eflegeo 16169 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
Theorem | sinval 16170 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
Theorem | cosval 16171 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
Theorem | sinf 16172 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ sin:ℂ⟶ℂ | ||
Theorem | cosf 16173 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ cos:ℂ⟶ℂ | ||
Theorem | sincl 16174 | Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | ||
Theorem | coscl 16175 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tanval 16176 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
Theorem | tancl 16177 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
Theorem | sincld 16178 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
Theorem | coscld 16179 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tancld 16180 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
Theorem | tanval2 16181 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
Theorem | tanval3 16182 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
Theorem | resinval 16183 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
Theorem | recosval 16184 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
Theorem | efi4p 16185* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
Theorem | resin4p 16186* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | recos4p 16187* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | resincl 16188 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscl 16189 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancl 16190 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
Theorem | resincld 16191 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscld 16192 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancld 16193 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
Theorem | sinneg 16194 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
Theorem | cosneg 16195 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
Theorem | tanneg 16196 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
Theorem | sin0 16197 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
⊢ (sin‘0) = 0 | ||
Theorem | cos0 16198 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
⊢ (cos‘0) = 1 | ||
Theorem | tan0 16199 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
⊢ (tan‘0) = 0 | ||
Theorem | efival 16200 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |