| Metamath
Proof Explorer Theorem List (p. 162 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | addcos 16101 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subcos 16102 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sincossq 16103 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
| Theorem | sin2t 16104 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
| Theorem | cos2t 16105 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
| Theorem | cos2tsin 16106 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
| Theorem | sinbnd 16107 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
| Theorem | cosbnd 16108 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
| Theorem | sinbnd2 16109 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | cosbnd2 16110 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | ef01bndlem 16111* | Lemma for sin01bnd 16112 and cos01bnd 16113. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
| Theorem | sin01bnd 16112 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
| Theorem | cos01bnd 16113 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
| Theorem | cos1bnd 16114 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
| Theorem | cos2bnd 16115 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
| Theorem | sinltx 16116 | The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) | ||
| Theorem | sin01gt0 16117 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
| Theorem | cos01gt0 16118 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
| Theorem | sin02gt0 16119 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
| Theorem | sincos1sgn 16120 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
| Theorem | sincos2sgn 16121 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
| Theorem | sin4lt0 16122 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (sin‘4) < 0 | ||
| Theorem | absefi 16123 | The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
| Theorem | absef 16124 | The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
| Theorem | absefib 16125 | A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
| Theorem | efieq1re 16126 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
| Theorem | demoivre 16127 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 16128 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Theorem | demoivreALT 16128 | Alternate proof of demoivre 16127. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Syntax | ctau 16129 | Extend class notation to include the constant tau, τ = 6.28318.... |
| class τ | ||
| Definition | df-tau 16130 | Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or 2π. Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.) |
| ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | ||
| Theorem | eirrlem 16131* | Lemma for eirr 16132. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) & ⊢ (𝜑 → e = (𝑃 / 𝑄)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | eirr 16132 | e is irrational. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ e ∉ ℚ | ||
| Theorem | egt2lt3 16133 | Euler's constant e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (2 < e ∧ e < 3) | ||
| Theorem | epos 16134 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ 0 < e | ||
| Theorem | epr 16135 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ e ∈ ℝ+ | ||
| Theorem | ene0 16136 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 0 | ||
| Theorem | ene1 16137 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 1 | ||
| Theorem | xpnnen 16138 | The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ℕ × ℕ) ≈ ℕ | ||
| Theorem | znnen 16139 | The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| ⊢ ℤ ≈ ℕ | ||
| Theorem | qnnen 16140 | The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
| ⊢ ℚ ≈ ℕ | ||
| Theorem | rpnnen2lem1 16141* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) | ||
| Theorem | rpnnen2lem2 16142* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) | ||
| Theorem | rpnnen2lem3 16143* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) | ||
| Theorem | rpnnen2lem4 16144* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) | ||
| Theorem | rpnnen2lem5 16145* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) | ||
| Theorem | rpnnen2lem6 16146* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ∈ ℝ) | ||
| Theorem | rpnnen2lem7 16147* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) | ||
| Theorem | rpnnen2lem8 16148* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑀 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘))) | ||
| Theorem | rpnnen2lem9 16149* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))) | ||
| Theorem | rpnnen2lem10 16150* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) | ||
| Theorem | rpnnen2lem11 16151* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
| Theorem | rpnnen2lem12 16152* | Lemma for rpnnen2 16153. (Contributed by Mario Carneiro, 13-May-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ 𝒫 ℕ ≼ (0[,]1) | ||
| Theorem | rpnnen2 16153 |
The other half of rpnnen 16154, where we show an injection from sets of
positive integers to real numbers. The obvious choice for this is
binary expansion, but it has the unfortunate property that it does not
produce an injection on numbers which end with all 0's or all 1's (the
more well-known decimal version of this is 0.999... 15806). Instead, we
opt for a ternary expansion, which produces (a scaled version of) the
Cantor set. Since the Cantor set is riddled with gaps, we can show that
any two sequences that are not equal must differ somewhere, and when
they do, they are placed a finite distance apart, thus ensuring that the
map is injective.
Our map assigns to each subset 𝐴 of the positive integers the number Σ𝑘 ∈ 𝐴(3↑-𝑘) = Σ𝑘 ∈ ℕ((𝐹‘𝐴)‘𝑘), where ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, (3↑-𝑘), 0)) (rpnnen2lem1 16141). This is an infinite sum of real numbers (rpnnen2lem2 16142), and since 𝐴 ⊆ 𝐵 implies (𝐹‘𝐴) ≤ (𝐹‘𝐵) (rpnnen2lem4 16144) and (𝐹‘ℕ) converges to 1 / 2 (rpnnen2lem3 16143) by geoisum1 15804, the sum is convergent to some real (rpnnen2lem5 16145 and rpnnen2lem6 16146) by the comparison test for convergence cvgcmp 15741. The comparison test also tells us that 𝐴 ⊆ 𝐵 implies Σ(𝐹‘𝐴) ≤ Σ(𝐹‘𝐵) (rpnnen2lem7 16147). Putting it all together, if we have two sets 𝑥 ≠ 𝑦, there must differ somewhere, and so there must be an 𝑚 such that ∀𝑛 < 𝑚(𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝑦) but 𝑚 ∈ (𝑥 ∖ 𝑦) or vice versa. In this case, we split off the first 𝑚 − 1 terms (rpnnen2lem8 16148) and cancel them (rpnnen2lem10 16150), since these are the same for both sets. For the remaining terms, we use the subset property to establish that Σ(𝐹‘𝑦) ≤ Σ(𝐹‘(ℕ ∖ {𝑚})) and Σ(𝐹‘{𝑚}) ≤ Σ(𝐹‘𝑥) (where these sums are only over (ℤ≥‘𝑚)), and since Σ(𝐹‘(ℕ ∖ {𝑚})) = (3↑-𝑚) / 2 (rpnnen2lem9 16149) and Σ(𝐹‘{𝑚}) = (3↑-𝑚), we establish that Σ(𝐹‘𝑦) < Σ(𝐹‘𝑥) (rpnnen2lem11 16151) so that they must be different. By contraposition (rpnnen2lem12 16152), we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) (Revised by NM, 17-Aug-2021.) |
| ⊢ 𝒫 ℕ ≼ (0[,]1) | ||
| Theorem | rpnnen 16154 | The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16170, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12902 and rpnnen2 16153, each showing an injection in one direction, and this last part uses sbth 9021 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ℝ ≈ 𝒫 ℕ | ||
| Theorem | rexpen 16155 | The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that ℝ is well-orderable (so we cannot use infxpidm2 9930 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ (ℝ × ℝ) ≈ ℝ | ||
| Theorem | cpnnen 16156 | The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
| ⊢ ℂ ≈ 𝒫 ℕ | ||
| Theorem | rucALT 16157 | Alternate proof of ruc 16170. This proof is a simple corollary of rpnnen 16154, which determines the exact cardinality of the reals. For an alternate proof discussed at mmcomplex.html#uncountable 16154, see ruc 16170. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 13-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℕ ≺ ℝ | ||
| Theorem | ruclem1 16158* | Lemma for ruc 16170 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) ⇒ ⊢ (𝜑 → ((〈𝐴, 𝐵〉𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))) | ||
| Theorem | ruclem2 16159* | Lemma for ruc 16170. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝑋 ∧ 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝐵)) | ||
| Theorem | ruclem3 16160* | Lemma for ruc 16170. The constructed interval [𝑋, 𝑌] always excludes 𝑀. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑋 = (1st ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ 𝑌 = (2nd ‘(〈𝐴, 𝐵〉𝐷𝑀)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝑀 < 𝑋 ∨ 𝑌 < 𝑀)) | ||
| Theorem | ruclem4 16161* | Lemma for ruc 16170. Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) | ||
| Theorem | ruclem6 16162* | Lemma for ruc 16170. Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) | ||
| Theorem | ruclem7 16163* | Lemma for ruc 16170. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) | ||
| Theorem | ruclem8 16164* | Lemma for ruc 16170. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (1st ‘(𝐺‘𝑁)) < (2nd ‘(𝐺‘𝑁))) | ||
| Theorem | ruclem9 16165* | Lemma for ruc 16170. The first components of the 𝐺 sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘𝑁)) ∧ (2nd ‘(𝐺‘𝑁)) ≤ (2nd ‘(𝐺‘𝑀)))) | ||
| Theorem | ruclem10 16166* | Lemma for ruc 16170. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) | ||
| Theorem | ruclem11 16167* | Lemma for ruc 16170. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) ⇒ ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) | ||
| Theorem | ruclem12 16168* | Lemma for ruc 16170. The supremum of the increasing sequence 1st ∘ 𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) & ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) & ⊢ 𝐺 = seq0(𝐷, 𝐶) & ⊢ 𝑆 = sup(ran (1st ∘ 𝐺), ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ∈ (ℝ ∖ ran 𝐹)) | ||
| Theorem | ruclem13 16169 | Lemma for ruc 16170. There is no function that maps ℕ onto ℝ. (Use nex 1800 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
| ⊢ ¬ 𝐹:ℕ–onto→ℝ | ||
| Theorem | ruc 16170 | The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 16158 through ruclem13 16169 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 16169 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable 16169. For an alternate proof see rucALT 16157. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
| ⊢ ℕ ≺ ℝ | ||
| Theorem | resdomq 16171 | The set of rationals is strictly less equinumerous than the set of reals (ℝ strictly dominates ℚ). (Contributed by NM, 18-Dec-2004.) |
| ⊢ ℚ ≺ ℝ | ||
| Theorem | aleph1re 16172 | There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005.) |
| ⊢ (ℵ‘1o) ≼ ℝ | ||
| Theorem | aleph1irr 16173 | There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
| ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) | ||
| Theorem | cnso 16174 | The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ∃𝑥 𝑥 Or ℂ | ||
Here we introduce elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory. | ||
| Theorem | sqrt2irrlem 16175 | Lemma for sqrt2irr 16176. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) | ||
| Theorem | sqrt2irr 16176 | The square root of 2 is irrational. See zsqrtelqelz 16687 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 16175, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ 16175. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (√‘2) ∉ ℚ | ||
| Theorem | sqrt2re 16177 | The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.) |
| ⊢ (√‘2) ∈ ℝ | ||
| Theorem | sqrt2irr0 16178 | The square root of 2 is an irrational number. (Contributed by AV, 23-Dec-2022.) |
| ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | ||
| Theorem | nthruc 16179 | The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16180 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
| ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) | ||
| Theorem | nthruz 16180 | The sequence ℕ, ℕ0, and ℤ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℕ0 but not ℕ and minus one belongs to ℤ but not ℕ0. This theorem refines the chain of proper subsets nthruc 16179. (Contributed by NM, 9-May-2004.) |
| ⊢ (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ) | ||
| Syntax | cdvds 16181 | Extend the definition of a class to include the divides relation. See df-dvds 16182. |
| class ∥ | ||
| Definition | df-dvds 16182* | Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | ||
| Theorem | divides 16183* | Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 30418). As proven in dvdsval3 16185, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 16183 and dvdsval2 16184 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | dvdsval2 16184 | One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
| Theorem | dvdsval3 16185 | One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) | ||
| Theorem | dvdszrcl 16186 | Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) | ||
| Theorem | dvdsmod0 16187 | If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁) → (𝑁 mod 𝑀) = 0) | ||
| Theorem | p1modz1 16188 | If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.) |
| ⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) | ||
| Theorem | dvdsmodexp 16189 | If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 16713). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) | ||
| Theorem | nndivdvds 16190 | Strong form of dvdsval2 16184 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | ||
| Theorem | nndivides 16191* | Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | moddvds 16192 | Two ways to say 𝐴≡𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | modm1div 16193 | An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1))) | ||
| Theorem | addmulmodb 16194 | An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ ((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁))) | ||
| Theorem | dvds0lem 16195 | A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) | ||
| Theorem | dvds1lem 16196* | A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) | ||
| Theorem | dvds2lem 16197* | A lemma to assist theorems of ∥ with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) & ⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → 𝑀 ∥ 𝑁)) | ||
| Theorem | iddvds 16198 | An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | ||
| Theorem | 1dvds 16199 | 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | ||
| Theorem | dvds0 16200 | Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |