| Metamath
Proof Explorer Theorem List (p. 162 of 495) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30866) |
(30867-32389) |
(32390-49419) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | efcl 16101 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efcld 16102 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efval2 16103* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
| Theorem | efcvg 16104* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
| Theorem | efcvgfsum 16105* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | reefcl 16106 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | reefcld 16107 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | ere 16108 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
| ⊢ e ∈ ℝ | ||
| Theorem | ege2le3 16109 | Lemma for egt2lt3 16225. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
| Theorem | ef0 16110 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (exp‘0) = 1 | ||
| Theorem | efcj 16111 | The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) | ||
| Theorem | efaddlem 16112* | Lemma for efadd 16113 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | efadd 16113 | Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | fprodefsum 16114* | Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) | ||
| Theorem | efcan 16115 | Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) | ||
| Theorem | efne0 16116 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efneg 16117 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
| Theorem | eff2 16118 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
| ⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
| Theorem | efsub 16119 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
| Theorem | efexp 16120 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
| Theorem | efzval 16121 | Value of the exponential function for integers. Special case of efval 16098. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
| Theorem | efgt0 16122 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
| Theorem | rpefcl 16123 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | rpefcld 16124 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | eftlcvg 16125* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | eftlcl 16126* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
| Theorem | reeftlcl 16127* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
| Theorem | eftlub 16128* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
| Theorem | efsep 16129* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
| Theorem | effsumlt 16130* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
| Theorem | eft0val 16131 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
| Theorem | ef4p 16132* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | efgt1p2 16133 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
| Theorem | efgt1p 16134 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
| Theorem | efgt1 16135 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
| Theorem | eflt 16136 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
| Theorem | efle 16137 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
| Theorem | reef11 16138 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reeff1 16139 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
| Theorem | eflegeo 16140 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
| Theorem | sinval 16141 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
| Theorem | cosval 16142 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
| Theorem | sinf 16143 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ sin:ℂ⟶ℂ | ||
| Theorem | cosf 16144 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ cos:ℂ⟶ℂ | ||
| Theorem | sincl 16145 | Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscl 16146 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tanval 16147 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
| Theorem | tancl 16148 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | sincld 16149 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscld 16150 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tancld 16151 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | tanval2 16152 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
| Theorem | tanval3 16153 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
| Theorem | resinval 16154 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
| Theorem | recosval 16155 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | efi4p 16156* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | resin4p 16157* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | recos4p 16158* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | resincl 16159 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscl 16160 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancl 16161 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | resincld 16162 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscld 16163 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancld 16164 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | sinneg 16165 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
| Theorem | cosneg 16166 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
| Theorem | tanneg 16167 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
| Theorem | sin0 16168 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
| ⊢ (sin‘0) = 0 | ||
| Theorem | cos0 16169 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (cos‘0) = 1 | ||
| Theorem | tan0 16170 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
| ⊢ (tan‘0) = 0 | ||
| Theorem | efival 16171 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
| Theorem | efmival 16172 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
| Theorem | sinhval 16173 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
| Theorem | coshval 16174 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | ||
| Theorem | resinhcl 16175 | The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | rpcoshcl 16176 | The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | ||
| Theorem | recoshcl 16177 | The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | ||
| Theorem | retanhcl 16178 | The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | tanhlt1 16179 | The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | ||
| Theorem | tanhbnd 16180 | The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) | ||
| Theorem | efeul 16181 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
| Theorem | efieq 16182 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
| Theorem | sinadd 16183 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cosadd 16184 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | tanaddlem 16185 | A useful intermediate step in tanadd 16186 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)) | ||
| Theorem | tanadd 16186 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
| Theorem | sinsub 16187 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cossub 16188 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | addsin 16189 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subsin 16190 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sinmul 16191 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16184 and cossub 16188. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | cosmul 16192 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 16184 and cossub 16188. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | addcos 16193 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subcos 16194 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sincossq 16195 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
| Theorem | sin2t 16196 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
| Theorem | cos2t 16197 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
| Theorem | cos2tsin 16198 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
| Theorem | sinbnd 16199 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
| Theorem | cosbnd 16200 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |