![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldvds | Structured version Visualization version GIF version |
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
reldvds | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 16297 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | 1 | relopabiv 5839 | 1 ⊢ Rel ∥ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Rel wrel 5700 (class class class)co 7443 · cmul 11183 ℤcz 12633 ∥ cdvds 16296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5701 df-rel 5702 df-dvds 16297 |
This theorem is referenced by: nznngen 44280 nzss 44281 nzin 44282 hashnzfz 44284 |
Copyright terms: Public domain | W3C validator |