| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldvds | Structured version Visualization version GIF version | ||
| Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| reldvds | ⊢ Rel ∥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvds 16161 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel ∥ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Rel wrel 5621 (class class class)co 7346 · cmul 11008 ℤcz 12465 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-dvds 16161 |
| This theorem is referenced by: nznngen 44348 nzss 44349 nzin 44350 hashnzfz 44352 |
| Copyright terms: Public domain | W3C validator |