Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldvds Structured version   Visualization version   GIF version

Theorem reldvds 43074
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
reldvds Rel ∥

Proof of Theorem reldvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 16198 . 2 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
21relopabiv 5821 1 Rel ∥
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wrex 3071  Rel wrel 5682  (class class class)co 7409   · cmul 11115  cz 12558  cdvds 16197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684  df-dvds 16198
This theorem is referenced by:  nznngen  43075  nzss  43076  nzin  43077  hashnzfz  43079
  Copyright terms: Public domain W3C validator