Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldvds | Structured version Visualization version GIF version |
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
reldvds | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 16063 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | 1 | relopabiv 5766 | 1 ⊢ Rel ∥ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 Rel wrel 5629 (class class class)co 7341 · cmul 10981 ℤcz 12424 ∥ cdvds 16062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3444 df-in 3908 df-ss 3918 df-opab 5159 df-xp 5630 df-rel 5631 df-dvds 16063 |
This theorem is referenced by: nznngen 42307 nzss 42308 nzin 42309 hashnzfz 42311 |
Copyright terms: Public domain | W3C validator |