Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldvds Structured version   Visualization version   GIF version

Theorem reldvds 44347
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
reldvds Rel ∥

Proof of Theorem reldvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 16161 . 2 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
21relopabiv 5760 1 Rel ∥
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wrex 3056  Rel wrel 5621  (class class class)co 7346   · cmul 11008  cz 12465  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-opab 5154  df-xp 5622  df-rel 5623  df-dvds 16161
This theorem is referenced by:  nznngen  44348  nzss  44349  nzin  44350  hashnzfz  44352
  Copyright terms: Public domain W3C validator