Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldvds | Structured version Visualization version GIF version |
Description: The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
reldvds | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 15892 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ∥ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Rel wrel 5585 (class class class)co 7255 · cmul 10807 ℤcz 12249 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-dvds 15892 |
This theorem is referenced by: nznngen 41823 nzss 41824 nzin 41825 hashnzfz 41827 |
Copyright terms: Public domain | W3C validator |