| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdszrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvds 16273 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 2 | opabssxp 5747 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
| 3 | 1, 2 | eqsstri 4005 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
| 4 | 3 | brel 5719 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 {copab 5181 × cxp 5652 (class class class)co 7405 · cmul 11134 ℤcz 12588 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-dvds 16273 |
| This theorem is referenced by: dvdsmod0 16278 p1modz1 16279 dvdsmodexp 16280 dvdsaddre2b 16326 dvdsabseq 16332 divconjdvds 16334 evenelz 16355 4dvdseven 16392 dfgcd2 16565 dvdsmulgcd 16575 dvdsnprmd 16709 dvdszzq 16740 oddvdsi 19529 odmulg 19537 gexdvdsi 19564 dvdschrmulg 21489 nnproddivdvdsd 42013 lcmineqlem14 42055 aks6d1c6isolem3 42189 grpods 42207 nzss 44341 nzin 44342 |
| Copyright terms: Public domain | W3C validator |