MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszrcl Structured version   Visualization version   GIF version

Theorem dvdszrcl 15604
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))

Proof of Theorem dvdszrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 15600 . . 3 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
2 opabssxp 5607 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ)
31, 2eqsstri 3949 . 2 ∥ ⊆ (ℤ × ℤ)
43brel 5581 1 (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  {copab 5092   × cxp 5517  (class class class)co 7135   · cmul 10531  cz 11969  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-dvds 15600
This theorem is referenced by:  dvdsmod0  15605  p1modz1  15606  dvdsmodexp  15607  dvdsaddre2b  15649  dvdsabseq  15655  divconjdvds  15657  evenelz  15677  4dvdseven  15714  dfgcd2  15884  dvdsmulgcd  15895  dvdsnprmd  16024  oddvdsi  18668  odmulg  18675  gexdvdsi  18700  dvdszzq  30557  dvdschrmulg  30908  nnproddivdvdsd  39289  lcmineqlem14  39330  nzss  41021  nzin  41022
  Copyright terms: Public domain W3C validator