MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszrcl Structured version   Visualization version   GIF version

Theorem dvdszrcl 15968
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))

Proof of Theorem dvdszrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 15964 . . 3 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
2 opabssxp 5679 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ)
31, 2eqsstri 3955 . 2 ∥ ⊆ (ℤ × ℤ)
43brel 5652 1 (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  {copab 5136   × cxp 5587  (class class class)co 7275   · cmul 10876  cz 12319  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-dvds 15964
This theorem is referenced by:  dvdsmod0  15969  p1modz1  15970  dvdsmodexp  15971  dvdsaddre2b  16016  dvdsabseq  16022  divconjdvds  16024  evenelz  16045  4dvdseven  16082  dfgcd2  16254  dvdsmulgcd  16265  dvdsnprmd  16395  oddvdsi  19156  odmulg  19163  gexdvdsi  19188  dvdszzq  31129  dvdschrmulg  31483  nnproddivdvdsd  40009  lcmineqlem14  40050  nzss  41935  nzin  41936
  Copyright terms: Public domain W3C validator