| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdszrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvds 16199 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 2 | opabssxp 5723 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
| 3 | 1, 2 | eqsstri 3990 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
| 4 | 3 | brel 5696 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 {copab 5164 × cxp 5629 (class class class)co 7369 · cmul 11049 ℤcz 12505 ∥ cdvds 16198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-dvds 16199 |
| This theorem is referenced by: dvdsmod0 16204 p1modz1 16205 dvdsmodexp 16206 dvdsaddre2b 16253 dvdsabseq 16259 divconjdvds 16261 evenelz 16282 4dvdseven 16319 dfgcd2 16492 dvdsmulgcd 16502 dvdsnprmd 16636 dvdszzq 16667 oddvdsi 19454 odmulg 19462 gexdvdsi 19489 dvdschrmulg 21414 nnproddivdvdsd 41961 lcmineqlem14 42003 aks6d1c6isolem3 42137 grpods 42155 nzss 44279 nzin 44280 |
| Copyright terms: Public domain | W3C validator |