| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdszrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvds 16164 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 2 | opabssxp 5706 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
| 3 | 1, 2 | eqsstri 3976 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
| 4 | 3 | brel 5679 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 {copab 5151 × cxp 5612 (class class class)co 7346 · cmul 11011 ℤcz 12468 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-dvds 16164 |
| This theorem is referenced by: dvdsmod0 16169 p1modz1 16170 dvdsmodexp 16171 dvdsaddre2b 16218 dvdsabseq 16224 divconjdvds 16226 evenelz 16247 4dvdseven 16284 dfgcd2 16457 dvdsmulgcd 16467 dvdsnprmd 16601 dvdszzq 16632 oddvdsi 19460 odmulg 19468 gexdvdsi 19495 dvdschrmulg 21465 nnproddivdvdsd 42041 lcmineqlem14 42083 aks6d1c6isolem3 42217 grpods 42235 nzss 44358 nzin 44359 |
| Copyright terms: Public domain | W3C validator |