![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdszrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 15359 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | opabssxp 5429 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
3 | 1, 2 | eqsstri 3861 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
4 | 3 | brel 5402 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∃wrex 3119 class class class wbr 4874 {copab 4936 × cxp 5341 (class class class)co 6906 · cmul 10258 ℤcz 11705 ∥ cdvds 15358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4875 df-opab 4937 df-xp 5349 df-dvds 15359 |
This theorem is referenced by: dvdsmod0 15364 p1modz1 15365 dvdsmodexp 15366 dvdsaddre2b 15407 dvdsabseq 15413 divconjdvds 15415 evenelz 15435 4dvdseven 15484 dfgcd2 15637 dvdsmulgcd 15648 dvdsnprmd 15776 oddvdsi 18319 odmulg 18325 gexdvdsi 18350 nzss 39357 nzin 39358 |
Copyright terms: Public domain | W3C validator |