| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdszrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvds 16223 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 2 | opabssxp 5731 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
| 4 | 3 | brel 5703 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 {copab 5169 × cxp 5636 (class class class)co 7387 · cmul 11073 ℤcz 12529 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dvds 16223 |
| This theorem is referenced by: dvdsmod0 16228 p1modz1 16229 dvdsmodexp 16230 dvdsaddre2b 16277 dvdsabseq 16283 divconjdvds 16285 evenelz 16306 4dvdseven 16343 dfgcd2 16516 dvdsmulgcd 16526 dvdsnprmd 16660 dvdszzq 16691 oddvdsi 19478 odmulg 19486 gexdvdsi 19513 dvdschrmulg 21438 nnproddivdvdsd 41988 lcmineqlem14 42030 aks6d1c6isolem3 42164 grpods 42182 nzss 44306 nzin 44307 |
| Copyright terms: Public domain | W3C validator |