HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalfval Structured version   Visualization version   GIF version

Theorem eigvalfval 31418
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalfval (𝑇: β„‹βŸΆ β„‹ β†’ (eigvalβ€˜π‘‡) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
Distinct variable group:   π‘₯,𝑇

Proof of Theorem eigvalfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . 3 (eigvecβ€˜π‘‡) ∈ V
21mptex 7227 . 2 (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))) ∈ V
3 ax-hilex 30520 . 2 β„‹ ∈ V
4 fveq2 6891 . . 3 (𝑑 = 𝑇 β†’ (eigvecβ€˜π‘‘) = (eigvecβ€˜π‘‡))
5 fveq1 6890 . . . . 5 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘₯) = (π‘‡β€˜π‘₯))
65oveq1d 7427 . . . 4 (𝑑 = 𝑇 β†’ ((π‘‘β€˜π‘₯) Β·ih π‘₯) = ((π‘‡β€˜π‘₯) Β·ih π‘₯))
76oveq1d 7427 . . 3 (𝑑 = 𝑇 β†’ (((π‘‘β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)) = (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)))
84, 7mpteq12dv 5239 . 2 (𝑑 = 𝑇 β†’ (π‘₯ ∈ (eigvecβ€˜π‘‘) ↦ (((π‘‘β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
9 df-eigval 31375 . 2 eigval = (𝑑 ∈ ( β„‹ ↑m β„‹) ↦ (π‘₯ ∈ (eigvecβ€˜π‘‘) ↦ (((π‘‘β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
102, 3, 3, 8, 9fvmptmap 8879 1 (𝑇: β„‹βŸΆ β„‹ β†’ (eigvalβ€˜π‘‡) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   / cdiv 11876  2c2 12272  β†‘cexp 14032   β„‹chba 30440   Β·ih csp 30443  normβ„Žcno 30444  eigveccei 30480  eigvalcel 30481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-hilex 30520
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8826  df-eigval 31375
This theorem is referenced by:  eigvalval  31481
  Copyright terms: Public domain W3C validator