HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalfval Structured version   Visualization version   GIF version

Theorem eigvalfval 31877
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalfval (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑇

Proof of Theorem eigvalfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . 3 (eigvec‘𝑇) ∈ V
21mptex 7157 . 2 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) ∈ V
3 ax-hilex 30979 . 2 ℋ ∈ V
4 fveq2 6822 . . 3 (𝑡 = 𝑇 → (eigvec‘𝑡) = (eigvec‘𝑇))
5 fveq1 6821 . . . . 5 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
65oveq1d 7361 . . . 4 (𝑡 = 𝑇 → ((𝑡𝑥) ·ih 𝑥) = ((𝑇𝑥) ·ih 𝑥))
76oveq1d 7361 . . 3 (𝑡 = 𝑇 → (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
84, 7mpteq12dv 5176 . 2 (𝑡 = 𝑇 → (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
9 df-eigval 31834 . 2 eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
102, 3, 3, 8, 9fvmptmap 8805 1 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346   / cdiv 11774  2c2 12180  cexp 13968  chba 30899   ·ih csp 30902  normcno 30903  eigveccei 30939  eigvalcel 30940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-hilex 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-eigval 31834
This theorem is referenced by:  eigvalval  31940
  Copyright terms: Public domain W3C validator