![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigvalfval | Structured version Visualization version GIF version |
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvalfval | ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6446 | . . 3 ⊢ (eigvec‘𝑇) ∈ V | |
2 | 1 | mptex 6742 | . 2 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) ∈ V |
3 | ax-hilex 28411 | . 2 ⊢ ℋ ∈ V | |
4 | fveq2 6433 | . . 3 ⊢ (𝑡 = 𝑇 → (eigvec‘𝑡) = (eigvec‘𝑇)) | |
5 | fveq1 6432 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
6 | 5 | oveq1d 6920 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih 𝑥) = ((𝑇‘𝑥) ·ih 𝑥)) |
7 | 6 | oveq1d 6920 | . . 3 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) |
8 | 4, 7 | mpteq12dv 4956 | . 2 ⊢ (𝑡 = 𝑇 → (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
9 | df-eigval 29268 | . 2 ⊢ eigval = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8159 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ↦ cmpt 4952 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 / cdiv 11009 2c2 11406 ↑cexp 13154 ℋchba 28331 ·ih csp 28334 normℎcno 28335 eigveccei 28371 eigvalcel 28372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-hilex 28411 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-eigval 29268 |
This theorem is referenced by: eigvalval 29374 |
Copyright terms: Public domain | W3C validator |