| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvalfval | Structured version Visualization version GIF version | ||
| Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvalfval | ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6853 | . . 3 ⊢ (eigvec‘𝑇) ∈ V | |
| 2 | 1 | mptex 7179 | . 2 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) ∈ V |
| 3 | ax-hilex 30901 | . 2 ⊢ ℋ ∈ V | |
| 4 | fveq2 6840 | . . 3 ⊢ (𝑡 = 𝑇 → (eigvec‘𝑡) = (eigvec‘𝑇)) | |
| 5 | fveq1 6839 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 6 | 5 | oveq1d 7384 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih 𝑥) = ((𝑇‘𝑥) ·ih 𝑥)) |
| 7 | 6 | oveq1d 7384 | . . 3 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) |
| 8 | 4, 7 | mpteq12dv 5189 | . 2 ⊢ (𝑡 = 𝑇 → (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
| 9 | df-eigval 31756 | . 2 ⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
| 10 | 2, 3, 3, 8, 9 | fvmptmap 8831 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 / cdiv 11811 2c2 12217 ↑cexp 14002 ℋchba 30821 ·ih csp 30824 normℎcno 30825 eigveccei 30861 eigvalcel 30862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-eigval 31756 |
| This theorem is referenced by: eigvalval 31862 |
| Copyright terms: Public domain | W3C validator |