HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalfval Structured version   Visualization version   GIF version

Theorem eigvalfval 31799
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalfval (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑇

Proof of Theorem eigvalfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fvex 6853 . . 3 (eigvec‘𝑇) ∈ V
21mptex 7179 . 2 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) ∈ V
3 ax-hilex 30901 . 2 ℋ ∈ V
4 fveq2 6840 . . 3 (𝑡 = 𝑇 → (eigvec‘𝑡) = (eigvec‘𝑇))
5 fveq1 6839 . . . . 5 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
65oveq1d 7384 . . . 4 (𝑡 = 𝑇 → ((𝑡𝑥) ·ih 𝑥) = ((𝑇𝑥) ·ih 𝑥))
76oveq1d 7384 . . 3 (𝑡 = 𝑇 → (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
84, 7mpteq12dv 5189 . 2 (𝑡 = 𝑇 → (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
9 df-eigval 31756 . 2 eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
102, 3, 3, 8, 9fvmptmap 8831 1 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369   / cdiv 11811  2c2 12217  cexp 14002  chba 30821   ·ih csp 30824  normcno 30825  eigveccei 30861  eigvalcel 30862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-eigval 31756
This theorem is referenced by:  eigvalval  31862
  Copyright terms: Public domain W3C validator