Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eldisjs Structured version   Visualization version   GIF version

Definition df-eldisjs 36796
Description: Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36819. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
df-eldisjs ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }

Detailed syntax breakdown of Definition df-eldisjs
StepHypRef Expression
1 celdisjs 36347 . 2 class ElDisjs
2 cep 5493 . . . . . 6 class E
32ccnv 5587 . . . . 5 class E
4 va . . . . . 6 setvar 𝑎
54cv 1540 . . . . 5 class 𝑎
63, 5cres 5590 . . . 4 class ( E ↾ 𝑎)
7 cdisjs 36345 . . . 4 class Disjs
86, 7wcel 2109 . . 3 wff ( E ↾ 𝑎) ∈ Disjs
98, 4cab 2716 . 2 class {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
101, 9wceq 1541 1 wff ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
Colors of variables: wff setvar class
This definition is referenced by:  eleldisjs  36818
  Copyright terms: Public domain W3C validator