Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eldisjs | Structured version Visualization version GIF version |
Description: Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36819. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
df-eldisjs | ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celdisjs 36347 | . 2 class ElDisjs | |
2 | cep 5493 | . . . . . 6 class E | |
3 | 2 | ccnv 5587 | . . . . 5 class ◡ E |
4 | va | . . . . . 6 setvar 𝑎 | |
5 | 4 | cv 1540 | . . . . 5 class 𝑎 |
6 | 3, 5 | cres 5590 | . . . 4 class (◡ E ↾ 𝑎) |
7 | cdisjs 36345 | . . . 4 class Disjs | |
8 | 6, 7 | wcel 2109 | . . 3 wff (◡ E ↾ 𝑎) ∈ Disjs |
9 | 8, 4 | cab 2716 | . 2 class {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
10 | 1, 9 | wceq 1541 | 1 wff ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
Colors of variables: wff setvar class |
This definition is referenced by: eleldisjs 36818 |
Copyright terms: Public domain | W3C validator |