| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eldisjs | Structured version Visualization version GIF version | ||
| Description: Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 38668. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| df-eldisjs | ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | celdisjs 38155 | . 2 class ElDisjs | |
| 2 | cep 5549 | . . . . . 6 class E | |
| 3 | 2 | ccnv 5650 | . . . . 5 class ◡ E |
| 4 | va | . . . . . 6 setvar 𝑎 | |
| 5 | 4 | cv 1538 | . . . . 5 class 𝑎 |
| 6 | 3, 5 | cres 5653 | . . . 4 class (◡ E ↾ 𝑎) |
| 7 | cdisjs 38153 | . . . 4 class Disjs | |
| 8 | 6, 7 | wcel 2107 | . . 3 wff (◡ E ↾ 𝑎) ∈ Disjs |
| 9 | 8, 4 | cab 2712 | . 2 class {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
| 10 | 1, 9 | wceq 1539 | 1 wff ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
| Colors of variables: wff setvar class |
| This definition is referenced by: eleldisjs 38667 |
| Copyright terms: Public domain | W3C validator |